Atomicity (database Systems)
In database systems, atomicity (; from ) is one of the ACID (''Atomicity, Consistency, Isolation, Durability'') transaction properties. An atomic transaction is an ''indivisible'' and '' irreducible'' series of database operations such that either ''all'' occur, or ''none'' occur. A guarantee of atomicity prevents partial database updates from occurring, because they can cause greater problems than rejecting the whole series outright. As a consequence, the transaction cannot be observed to be in progress by another database client. At one moment in time, it has not yet happened, and at the next it has already occurred in whole (or nothing happened if the transaction was cancelled in progress). An example of transaction atomicity could be a digital monetary transfer from bank account A to account B. It consists of two operations, debiting the money from account A and crediting it to account B. Performing both of these operations inside of an atomic transaction ensures that the da ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Database System
In computing, a database is an organized collection of data or a type of data store based on the use of a database management system (DBMS), the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database. Before digital storage and retrieval of data have become widespread, index cards were used for data storage in a wide range of applications and environments: in the home to record and store recipes, shopping lists, contact information and other organizational data; in business to record presentation notes, project research and notes, and contact information; in schools as flash cards ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
POSIX Threads
In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time. Each flow of work is referred to as a '' thread'', and creation and control over these flows is achieved by making calls to the POSIX Threads API. POSIX Threads is an API defined by the Institute of Electrical and Electronics Engineers (IEEE) standard ''POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)''. Implementations of the API are available on many Unix-like POSIX-conformant operating systems such as FreeBSD, NetBSD, OpenBSD, Linux, macOS, Android, Solaris, Redox, and AUTOSAR Adaptive, typically bundled as a library libpthread. DR-DOS and Microsoft Windows implementations also exist: within the SFU/SUA subsystem which provides a native implementation of a number of POSIX APIs, and also within third-party package ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Read-copy-update
In computer science, read-copy-update (RCU) is a synchronization mechanism that avoids the use of lock primitives while multiple threads concurrently read and update elements that are linked through pointers and that belong to shared data structures (e.g., linked lists, trees, hash tables). Whenever a thread is inserting or deleting elements of data structures in shared memory, all readers are guaranteed to see and traverse either the older or the new structure, therefore avoiding inconsistencies (e.g., dereferencing null pointers). It is used when performance of reads is crucial and is an example of space–time tradeoff, enabling fast operations at the cost of more space. This makes all readers proceed as if there were no synchronization involved, hence they will be fast, but also making updates more difficult. Name and overview The name comes from the way that RCU is used to update a linked structure in place. A thread wishing to do this uses the following steps: * create a n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Long-running Transaction
Long-running transactions (also known as the saga interaction pattern) are computer database transactions that avoid locks on non-local resources, use compensation to handle failures, potentially aggregate smaller ACID transactions (also referred to as atomic transactions), and typically use a coordinator to complete or abort the transaction. In contrast to rollback in ACID transactions, compensation restores the original state, or an equivalent, and is business-specific. For example, the compensating action for making a hotel reservation is canceling that reservation. A number of protocols have been specified for long-running transactions using Web services within business processes. OASIS Business Transaction Processing and WS-CAF are examples. These protocols use a coordinator to mediate the successful completion or use of compensation in a long-running transaction. See also *Optimistic concurrency control *Long-lived transaction A long-lived transaction is a transaction tha ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Transaction Processing
In computer science, transaction processing is information processing that is divided into individual, indivisible operations called ''transactions''. Each transaction must succeed or fail as a complete unit; it can never be only partially complete. For example, when you purchase a book from an online bookstore, you exchange money (in the form of credit) for a book. If your credit is good, a series of related operations ensures that you get the book and the bookstore gets your money. However, if a single operation in the series fails during the exchange, the entire exchange fails. You do not get the book and the bookstore does not get your money. The technology responsible for making the exchange balanced and predictable is called ''transaction processing''. Transactions ensure that data-oriented resources are not permanently updated unless all operations within the transactional unit complete successfully. By combining a set of related operations into a unit that either com ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Atomic Operation
In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of Execution (computing), invocation and response Event (computing), events, that may be extended by adding response events such that: # The extended list can be re-expressed as a sequential history (is serializability, serializable). # That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return. In a concurrent system, processes can access a shared Object (computer science), object at the same time. Because multiple processes are accessing a single object, a situation may arise in which while one process is accessing the object, another process changes its contents. Making a system linearizable is one solution to this problem. In a linearizable system, although operat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Multi-processing
Multiprocessing (MP) is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are many variations on this basic theme, and the definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined ( multiple cores on one die, multiple dies in one package, multiple packages in one system unit, etc.). A multiprocessor is a computer system having two or more processing units (multiple processors) each sharing main memory and peripherals, in order to simultaneously process programs. A 2009 textbook defined multiprocessor system similarly, but noted that the processors may share "some or all of the system’s memory and I/O facilities"; it also gave tightly coupled system as a synonymous term. At the operating system level, ''multiprocessing'' is sometimes used to refer to the execution ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Memory Barrier
In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier. Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behavior in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture's memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Load-Link/Store-Conditional
In computer science, load-linked/store-conditional (LL/SC), sometimes known as load-reserved/store-conditional (LR/SC), are a pair of instructions used in multithreading to achieve synchronization. Load-link returns the current value of a memory location, while a subsequent store-conditional to the same memory location will store a new value only if no updates have occurred to that location since the load-link. Together, this implements a lock-free, atomic, read-modify-write operation. "Load-linked" is also known as load-link, load-reserved, and load-locked. LL/SC was originally proposed by Jensen, Hagensen, and Broughton for the S-1 AAP multiprocessor at Lawrence Livermore National Laboratory. Comparison of LL/SC and compare-and-swap If any updates have occurred, the store-conditional is guaranteed to fail, even if the value read by the load-link has since been restored. As such, an LL/SC pair is stronger than a read followed by a compare-and-swap (CAS), which will not de ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Compare-and-swap
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given (the previous) value and, only if they are the same, modifies the contents of that memory location to a new given value. This is done as a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-date information; if the value had been updated by another thread in the meantime, the write would fail. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (''not'' the value written to it), thus "swapping" the read and written values. Overview A compare-and-swap operation is an atomic version of the following pseudocode, where denotes access through a pointer: function cas(p: poin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Fetch-and-add
In computer science, the fetch-and-add (FAA) CPU instruction atomically increments the contents of a memory location by a specified value. That is, fetch-and-add performs the following operation: increment the value at address by , where is a memory location and is some value, and return the original value at . in such a way that if this operation is executed by one process in a concurrent system, no other process will ever see an intermediate result. Fetch-and-add can be used to implement concurrency control structures such as mutex locks and semaphores. Overview The motivation for having an atomic fetch-and-add is that operations that appear in programming languages as are not safe in a concurrent system, where multiple processes or threads are running concurrently (either in a multi-processor system, or preemptively scheduled onto some single-core systems). The reason is that such an operation is actually implemented as multiple machine instructions: # load in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |