HOME



picture info

Apollonian Gasket
In mathematics, an Apollonian gasket, Apollonian net, or Apollonian circle packing is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga. Construction The construction of the Apollonian gasket starts with three circles C_1, C_2, and C_3 (black in the figure), that are each tangent to the other two, but that do not have a single point of triple tangency. These circles may be of different sizes to each other, and it is allowed for two to be inside the third, or for all three to be outside each other. As Apollonius discovered, there exist two more circles C_4 and C_5 (red) that are tangent to all three of the original circles – these are called ''Apollonian circles''. These five circles are separated from each other by six curved triangular regions, each bounded by the arcs from three pairwise-tangent circles. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-similarity
In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e., the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is distinguished by their fine structure, or detail on arbitrarily small scales. As a counterexample, whereas any portion of a straight line may resemble the whole, further detail is not revealed. Peitgen ''et al.'' explain the concept as such: Since mathematically, a fractal may sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Symmetry In Three Dimensions
In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dih''n'' (for ''n'' ≥ 2). Types There are 3 types of dihedral symmetry in three dimensions, each shown below in 3 notations: Schönflies notation, Coxeter notation, and orbifold notation. ;Chiral: *''Dn'', [''n'',2]+, (22''n'') of order 2''n'' – dihedral symmetry or para-n-gonal group (abstract group: Dihedral group, ''Dihn''). ;Achiral: *''Dnh'', [''n'',2], (*22''n'') of order 4''n'' – prismatic symmetry or full ortho-n-gonal group (abstract group: ''Dihn'' × ''Z''2). *''Dnd'' (or ''Dnv''), [2''n'',2+], (2*''n'') of order 4''n'' – antiprismatic symmetry or full gyro-n-gonal group (abstract group: ''Dih''2''n''). For a given ''n'', all three have ''n''-fold rotational symmetry about one axis (rotation by an angle of 360°/''n'' does not change the object), and 2-fold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quanta Magazine
''Quanta Magazine'' is an editorially independent online publication of the Simons Foundation covering developments in physics, mathematics, biology and computer science. History ''Quanta Magazine'' was initially launched as ''Simons Science News'' in October 2012, but it was renamed to its current title in July 2013. It was founded by the former ''New York Times'' journalist Thomas Lin, who was the magazine's editor-in-chief until 2024. The two deputy editors are John Rennie and Michael Moyer, formerly of ''Scientific American'', and the art director is Samuel Velasco. In 2024, Samir Patel became the magazine's second editor in chief. Content The articles in the magazine are freely available to read online. ''Scientific American'', ''Wired'', ''The Atlantic'', and ''The Washington Post'', as well as international science publications like '' Spektrum der Wissenschaft'', have reprinted articles from the magazine. In November 2018, MIT Press The MIT Press is the uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Python (programming Language)
Python is a high-level programming language, high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is type system#DYNAMIC, dynamically type-checked and garbage collection (computer science), garbage-collected. It supports multiple programming paradigms, including structured programming, structured (particularly procedural programming, procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC (programming language), ABC programming language, and he first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Number
A Markov number or Markoff number is a positive integer ''x'', ''y'' or ''z'' that is part of a solution to the Markov Diophantine equation :x^2 + y^2 + z^2 = 3xyz,\, studied by . The first few Markov numbers are :1 (number), 1, 2 (number), 2, 5 (number), 5, 13 (number), 13, 29 (number), 29, 34 (number), 34, 89 (number), 89, 169 (number), 169, 194 (number), 194, 233 (number), 233, 433, 610, 985, 1325, ... appearing as coordinates of the Markov triples :(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), ... There are infinitely many Markov numbers and Markov triples. Markov tree There are two simple ways to obtain a new Markov triple from an old one (''x'', ''y'', ''z''). First, one may permutation, permute the 3 numbers ''x'',''y'',''z'', so in particular one can normalize the triples so that ''x'' ≤ ''y'' ≤&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vieta Jumping
In number theory, Vieta jumping, also known as root flipping, is a proof technique. It is most often used for problems in which a relation between two integers is given, along with a statement to prove about its solutions. In particular, it can be used to produce new solutions of a quadratic Diophantine equation from known ones. There exist multiple variations of Vieta jumping, all of which involve the common theme of infinite descent by finding new solutions to an equation using Vieta's formulas. History Vieta jumping is a classical method in the theory of quadratic Diophantine equations and binary quadratic forms. For example, it was used in the analysis of the Markov equation back in 1879 and in the 1953 paper of Mills. In 1988, the method came to the attention to mathematical olympiad problems in the light of the first olympiad problem to use it in a solution that was proposed for the International Mathematics Olympiad and assumed to be the most difficult problem on the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvature
In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined ''extrinsically'' relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined ''intrinsically'' without reference to a larger space. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature ''at a point'' of a differentiable curve is the curvature of its osculating circle — that is, the circle that best approximates the curve near this point. The curvature of a straight line is zero. In contrast to the tangent, which is a vector quantity, the curvature at a point is typically a scalar q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group
In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetry, rotational symmetries and n reflection symmetry, reflection symmetries. Usually, we take n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleinian Group
In mathematics, a Kleinian group is a discrete subgroup of the group (mathematics), group of orientation-preserving Isometry, isometries of hyperbolic 3-space . The latter, identifiable with PSL(2,C), , is the quotient group of the 2 by 2 complex number, complex matrix (mathematics), matrices of determinant 1 by their center (group theory), center, which consists of the identity matrix and its product by . has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball in . The group of Möbius transformation, Möbius transformations is also related as the non-orientation-preserving isometry group of , . So, a Kleinian group can be regarded as a discrete subgroup group action, acting on one of these spaces. History The theory of general Kleinian groups was founded by and , who named them after Felix Klein. The special case of Schottky groups had been studied a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]