Aperiodic Set Of Prototiles
A set of prototiles is aperiodic tiling, aperiodic if copies of the prototiles can be assembled to create Tessellation, tilings, such that all possible tessellation patterns are non-periodic tiling, periodic. The ''aperiodicity'' referred to is a property of the particular set of prototiles; the various resulting tilings themselves are just non-periodic. A given set of tiles, in the Euclidean plane or some other geometric setting, ''admits a tiling'' if non-overlapping copies of the tiles in the set can be fitted together to cover the entire space. A given set of tiles might admit periodic tilings — that is, tilings that remain invariant after being shifted by a Translation (geometry), translation (for example, a lattice of square tiles is periodic). It is not difficult to design a set of tiles that admits non-periodic tilings as well as periodic tilings. (For example, randomly arranged tilings using a 2×2 square and 2×1 rectangle are typically non-periodic.) However, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fund Un Prim Cell
Fund may refer to: * Funding is the act of providing resources, usually in form of money, or other values such as effort or time, for a project, a person, a business, or any other private or public institution ** The process of soliciting and gathering funds is known as fundraising * An investment fund, often referred to as a fund ** Hedge fund, an investment vehicle open only to investors who are qualified in some way ** Mutual fund, a specific type of investment fund which pools money from many investors to purchase securities ** Sovereign wealth fund, a state-owned investment fund * Fund accounting, an accounting system used for recording resource use under limitations imposed by a donor or regulator *Meir Fund Meir Fund is an American Orthodox rabbi, Kabbalist, and spiritual leader of Congregation ''Sheves Achim, 1517 Avenue H,'' in Brooklyn, New York Brooklyn is a Boroughs of New York City, borough of New York City located at the westernmost en ..., American rabbi *FUN ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shape
A shape is a graphics, graphical representation of an object's form or its external boundary, outline, or external Surface (mathematics), surface. It is distinct from other object properties, such as color, Surface texture, texture, or material type. In geometry, ''shape'' excludes information about the object's Position (geometry), position, size, Orientation (geometry), orientation and chirality. A ''figure'' is a representation including both shape and size (as in, e.g., figure of the Earth). A plane shape or plane figure is constrained to lie on a ''plane (geometry), plane'', in contrast to ''solid figure, solid'' 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved ''surface (mathematics), surface'' (a two-dimensional space). Classification of simple shapes Some simple shapes can be put into broad categories. For instance, polygons are classified according to their number of edges as triangles, qua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert's Eighteenth Problem
Hilbert's eighteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by mathematician David Hilbert. It asks three separate questions about lattices and sphere packing in Euclidean space. Symmetry groups in dimensions The first part of the problem asks whether there are only finitely many essentially different space groups in n-dimensional Euclidean space. This was answered affirmatively by Bieberbach. Anisohedral tiling in 3 dimensions The second part of the problem asks whether there exists a polyhedron which tiles 3-dimensional Euclidean space but is not the fundamental region of any space group; that is, which tiles but does not admit an isohedral (tile- transitive) tiling. Such tiles are now known as anisohedral. In asking the problem in three dimensions, Hilbert was probably assuming that no such tile exists in two dimensions; this assumption later turned out to be incorrect. The first such tile in three dimensions was found b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncated Octahedron
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Square (geometry), squares), 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate (or "pack") 3-dimensional space, as a permutohedron. The truncated octahedron was called the "mecon" by Buckminster Fuller. Its dual polyhedron is the tetrakis hexahedron. If the original truncated octahedron has unit edge length, its dual tetrakis hexahedron has edge lengths and . Classifications As an Archimedean solid A truncated octahedron is constructed from a regular octahedron by cutting off all vertices. This resulting polyhedron has six squares and eight hexagons, leaving ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex (geometry)
In geometry, a vertex (: vertices or vertexes), also called a corner, is a point (geometry), point where two or more curves, line (geometry), lines, or line segments Tangency, meet or Intersection (geometry), intersect. For example, the point where two lines meet to form an angle and the point where edge (geometry), edges of polygons and polyhedron, polyhedra meet are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edge (geometry)
In geometry, an edge is a particular type of line segment joining two vertex (geometry), vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two Face (geometry), faces (or polyhedron sides) meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. An ''edge'' may also be an infinite line (geometry), line separating two half-planes. The ''sides'' of a plane angle are semi-infinite Half-line (geometry), half-lines (or rays). Relation to edges in graphs In graph theory, an Edge (graph theory), edge is an abstract object connecting two vertex (graph theory), graph vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its n-s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Face (geometry)
In solid geometry, a face is a flat surface (a Plane (geometry), planar region (mathematics), region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense. In more modern treatments of the geometry of polyhedra and higher-dimensional polytopes, a "face" is defined in such a way that it may have any dimension. The vertices, edges, and (2-dimensional) faces of a polyhedron are all faces in this more general sense. Polygonal face In elementary geometry, a face is a polygon on the boundary of a polyhedron. (Here a "polygon" should be viewed as including the 2-dimensional region inside it.) Other names for a polygonal face include polyhedron side and Euclidean plane ''tessellation, tile''. For example, any of the six square (geometry), squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Three-dimensional Space
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called '' 3-manifolds''. The term may also refer colloquially to a subset of space, a ''three-dimensional region'' (or 3D domain), a '' solid figure''. Technically, a tuple of numbers can be understood as the Cartesian coordinates of a location in a -dimensional Euclidean space. The set of these -tuples is commonly denoted \R^n, and can be identified to the pair formed by a -dimensional Euclidean space and a Cartesian coordinate system. When , this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyhedra
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term ''polyhedron'' is often used to refer implicitly to the whole structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices. There are many definitions of polyhedron. Nevertheless, the polyhedron is typically understood as a generalization of a two-dimensional polygon and a three-dimensional specialization of a polytope, a more general concept in any number of dimensions. Polyhedra have several general characteristics that include the number of faces, topological classification by Euler characteristic, duality, vertex figures, surface area, volume, interior lines, Dehn invari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tessellation
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include '' regular tilings'' with regular polygonal tiles all of the same shape, and '' semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An '' aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A '' tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pappus Of Alexandria
Pappus of Alexandria (; ; AD) was a Greek mathematics, Greek mathematician of late antiquity known for his ''Synagoge'' (Συναγωγή) or ''Collection'' (), and for Pappus's hexagon theorem in projective geometry. Almost nothing is known about his life except for what can be found in his own writings, many of which are lost. Pappus apparently lived in Alexandria, where he worked as a Mathematics education, mathematics teacher to higher level students, one of whom was named Hermodorus.Pierre Dedron, J. Itard (1959) ''Mathematics And Mathematicians'', Vol. 1, p. 149 (trans. Judith V. Field) (Transworld Student Library, 1974) The ''Collection'', his best-known work, is a compendium of mathematics in eight volumes, the bulk of which survives. It covers a wide range of topics that were part of the ancient mathematics curriculum, including geometry, astronomy, and mechanics. Pappus was active in a period generally considered one of stagnation in mathematical studies, where, to s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equiangular Polygon
In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal (that is, if it is also equilateral polygon, equilateral) then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths. For clarity, a planar equiangular polygon can be called ''direct'' or ''indirect''. A direct equiangular polygon has all angles turning in the same direction in a plane and can include multiple turn (angle), turns. Convex equiangular polygons are always direct. An indirect equiangular polygon can include angles turning right or left in any combination. A skew polygon, skew equiangular polygon may be isogonal figure, isogonal, but can't be considered direct since it is nonplanar. A spirolateral ''n''θ is a special case of an ''equiangular polygon'' with a set of ''n'' integer edge lengths repeating sequence until returning to the start, with vertex internal angles θ. Construc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |