HOME



picture info

Angular Standard Deviation
Directional statistics (also circular statistics or spherical statistics) is the subdiscipline of statistics that deals with directions (unit vectors in Euclidean space, R''n''), axes ( lines through the origin in R''n'') or rotations in R''n''. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold. The fact that 0 degrees and 360 degrees are identical angles, so that for example 180 degrees is not a sensible mean of 2 degrees and 358 degrees, provides one illustration that special statistical methods are required for the analysis of some types of data (in this case, angular data). Other examples of data that may be regarded as directional include statistics involving temporal periods (e.g. time of day, week, month, year, etc.), compass directions, dihedral angles in molecules, orientations, rotations and so on. Circular distributions Any probability density function (pdf) \ p(x) on the line can be "wr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bessel Function
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arises when finding separa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bingham Distribution
In statistics, the Bingham distribution, named after Christopher Bingham, is an antipodally symmetric probability distribution on the ''n''-sphere. It is a generalization of the Watson distribution and a special case of the Kent and Fisher–Bingham distributions. The Bingham distribution is widely used in paleomagnetic data analysis, and has been used in the field of computer vision. Its probability density function is given by : f(\mathbf\,;\,M,Z) \; dS^ = _1 F_1 \left( \tfrac12 ; \tfrac n2 ; Z \right)^ \cdot \exp \left( \operatorname Z M^T \mathbf \mathbf^T M \right)\; dS^ which may also be written : f(\mathbf\,;\,M,Z)\; dS^ \;=\; _1 F_1 \left( \tfrac12 ; \tfrac n2 ;Z \right)^ \cdot \exp\left( \mathbf^T M Z M^T \mathbf \right)\; dS^ where x is an axis (i.e., a unit vector), ''M'' is an orthogonal orientation matrix, ''Z'' is a diagonal concentration matrix, and _F_(\cdot;\cdot,\cdot) is a confluent hypergeometric function of matrix argument. The matrices ''M'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Matrix
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation (mathematics), rotation in Euclidean space. For example, using the convention below, the matrix :R = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end rotates points in the plane counterclockwise through an angle about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates , it should be written as a column vector, and matrix multiplication, multiplied by the matrix : : R\mathbf = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end \begin x \\ y \end = \begin x\cos\theta-y\sin\theta \\ x\sin\theta+y\cos\theta \end. If and are the coordinates of the endpoint of a vector with the length ''r'' and the angle \phi with respect to the -axis, so that x = r \cos \phi and y = r \sin \phi, then the above equations become the List of trigonometric identities#Angle sum and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Von Mises–Fisher Distribution
Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the material in between a eukaryotic organism's cells * Matrix (chemical analysis), the non-analyte components of a sample * Matrix (geology), the fine-grained material in which larger objects are embedded * Matrix (composite), the constituent of a composite material * Hair matrix, produces hair * Nail matrix, part of the nail in anatomy Technology * Matrix (mass spectrometry), a compound that promotes the formation of ions * Matrix (numismatics), a tool used in coin manufacturing * Matrix (printing), a mould for casting letters * Matrix (protocol), an open standard for real-time communication * Matrix (record production), or master, a disc used in the production of phonograph records ** Matrix number, of a gramophone record * Diode matri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bivariate Von Mises Distribution
In probability theory and statistics, the bivariate von Mises distribution is a probability distribution describing values on a torus. It may be thought of as an analogue on the torus of the bivariate normal distribution. The distribution belongs to the field of directional statistics. The general bivariate von Mises distribution was first proposed by Kanti Mardia in 1975. One of its variants is today used in the field of bioinformatics to formulate a probabilistic model of protein structure in atomic detail, such as backbone-dependent rotamer libraries. Definition The bivariate von Mises distribution is a probability distribution defined on the torus, S^1 \times S^1 in \mathbb^3. The probability density function of the general bivariate von Mises distribution for the angles \phi, \psi \in , 2\pi/math> is given by : f(\phi, \psi) \propto \exp \kappa_1 \cos(\phi - \mu) + \kappa_2 \cos(\psi - \nu) + (\cos(\phi-\mu), \sin(\phi-\mu)) \mathbf (\cos(\psi - \nu), \sin(\psi - \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Mises–Fisher Distribution
In directional statistics, the von Mises–Fisher distribution (named after Richard von Mises and Ronald Fisher), is a probability distribution on the (p-1)-sphere in \mathbb^. If p=2 the distribution reduces to the von Mises distribution on the circle. Definition The probability density function of the von Mises–Fisher distribution for the random ''p''-dimensional unit vector \mathbf is given by: :f_(\mathbf; \boldsymbol, \kappa) = C_(\kappa) \exp \left( \right), where \kappa \ge 0, \left \Vert \boldsymbol \right \Vert = 1 and the normalization constant C_(\kappa) is equal to : C_(\kappa)=\frac , where I_ denotes the modified Bessel function of the first kind at order v. If p = 3, the normalization constant reduces to : C_(\kappa) = \frac = \frac . The parameters \boldsymbol and \kappa are called the ''mean direction'' and '' concentration parameter'', respectively. The greater the value of \kappa, the higher the concentration of the distribution around the mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-sphere
In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point within them has one and two degrees of freedom respectively. However, the typical embedding of the 1-dimensional circle is in 2-dimensional space, the 2-dimensional sphere is usually depicted embedded in 3-dimensional space, and a general -sphere is embedded in an -dimensional space. The term ''hyper''sphere is commonly used to distinguish spheres of dimension which are thus embedded in a space of dimension , which means that they cannot be easily visualized. The -sphere is the setting for -dimensional spherical geometry. Considered extrinsically, as a hypersurface embedded in -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the ''radius'') from a given '' center'' point. Its interior, consisting of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kent Distribution
In directional statistics, the Kent distribution, also known as the 5-parameter Fisher–Bingham distribution (named after John T. Kent, Ronald Fisher, and Christopher Bingham), is a probability distribution on the unit sphere (2-sphere ''S''2 in 3-space R3). It is the analogue on ''S''2 of the bivariate normal distribution with an unconstrained covariance matrix. The Kent distribution was proposed by John T. Kent in 1982, and is used in geology as well as bioinformatics. Definition The probability density function f(\mathbf)\, of the Kent distribution is given by: : f(\mathbf) = \frac\exp\left\ where \mathbf\, is a three-dimensional unit vector, (\cdot)^T denotes the transpose of (\cdot), and the normalizing constant \textrm(\kappa,\beta)\, is: : c(\kappa,\beta) = 2\pi\sum_^\infty \frac\beta^\left(\frac\kappa\right)^ I_(\kappa) Where I_v(\kappa) is the modified Bessel function and \Gamma(\cdot) is the gamma function. Note that c(0,0) = 4\pi and c(\kappa,0)=4\pi(\kap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Two-dimensional Sphere
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point Sets From Kent Distributions Mapped Onto A Sphere - Journal
A point is a small dot or the sharp tip of something. Point or points may refer to: Mathematics * Point (geometry), an entity that has a location in space or on a plane, but has no extent; more generally, an element of some abstract topological space * Point, or Element (category theory), generalizes the set-theoretic concept of an element of a set to an object of any category * Critical point (mathematics), a stationary point of a function of an arbitrary number of variables * Decimal point * Point-free geometry * Stationary point, a point in the domain of a single-valued function where the value of the function ceases to change Places * Point, Cornwall, England, a settlement in Feock parish * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Points, West Virginia, an unincorporated community in the United States Business an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]