Andrásfai Graph
   HOME





Andrásfai Graph
In graph theory, an Andrásfai graph is a triangle-free graph, triangle-free, circulant graph named after Béla Andrásfai. Properties The Andrásfai graph for any natural number is a circulant graph on vertices, in which vertex is connected by an edge to vertices , for every that is congruent to 1 mod 3. For instance, the Wagner graph is an Andrásfai graph, the graph . The graph family is triangle-free, and has an independence number of . From this the formula results, where is the Ramsey number. The equality holds for and only. The Andrásfai graphs were later generalized.W. Bedenknecht, G. O. Mota, Ch. Reiher, M. Schacht, On the local density problem for graphs of given odd-girth, ''Electronic Notes in Discrete Mathematics'', Volume 62, 2017, pp. 39-44. References Bibliography * * * Related Items

* Petersen graph * Cayley graph Parametric families of graphs Regular graphs {{combin-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Béla Andrásfai
Béla Andrásfai (Kám, Hungary, February 8, 1931) is a Hungarian mathematician. The Andrásfai graph was named after him. He began his high school studies in 1942 at Verbőczy High School in Budapest, continued at Szombathely High School in 1946, and graduated from high school in 1951. In 1954 he graduated as a teacher of mathematics and physics from the Budapest College of Pedagogy, and in 1957 from Eötvös Loránd University. Between 1953 and 1955 he was a teaching assistant at the Department of Mathematics at the College of Pedagogy, then went on to the Faculty of Electrical Engineering of the Budapest Technical University. Assistant professor from 1963, associated professor from 1965 until his retirement in 1996. In 1963 he was awarded the title of Candidate of Mathematical Sciences. Designer and subject lecturer of the course ''Discrete Mathematics''. At the invitation of the Mathematical Institute of the Eötvös Loránd University, he taught the ''Mathematics on the Doc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with edges is triangle-free in time . Another approach is to find the trace of , where is the adjacency matrix of the graph. The trace is zero if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circulant Graph
In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings. Equivalent definitions Circulant graphs can be described in several equivalent ways:. *The automorphism group of the graph includes a cyclic subgroup that acts transitively on the graph's vertices. In other words, the graph has a graph automorphism, which is a cyclic permutation of its vertices. *The graph has an adjacency matrix that is a circulant matrix. *The vertices of the graph can be numbered from 0 to in such a way that, if some two vertices numbered and are adjacent, then every two vertices numbered and are adjacent. *The graph can be drawn (possibly with crossings) so that its vertices lie on the corners of a regular polygon, and every rotational symmetry of the polygon is also a symmetry of the drawing. *The graph is a Cayley graph of a cycli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with edges is triangle-free in time . Another approach is to find the trace of , where is the adjacency matrix of the graph. The trace is zero if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circulant Graph
In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings. Equivalent definitions Circulant graphs can be described in several equivalent ways:. *The automorphism group of the graph includes a cyclic subgroup that acts transitively on the graph's vertices. In other words, the graph has a graph automorphism, which is a cyclic permutation of its vertices. *The graph has an adjacency matrix that is a circulant matrix. *The vertices of the graph can be numbered from 0 to in such a way that, if some two vertices numbered and are adjacent, then every two vertices numbered and are adjacent. *The graph can be drawn (possibly with crossings) so that its vertices lie on the corners of a regular polygon, and every rotational symmetry of the polygon is also a symmetry of the drawing. *The graph is a Cayley graph of a cycli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal numbers'', and numbers used for ordering are called '' ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by succ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wagner Graph
In the mathematical field of graph theory, the Wagner graph is a 3- regular graph with 8 vertices and 12 edges. It is the 8-vertex Möbius ladder graph. Properties As a Möbius ladder, the Wagner graph is nonplanar but has crossing number one, making it an apex graph. It can be embedded without crossings on a torus or projective plane, so it is also a toroidal graph. It has girth 4, diameter 2, radius 2, chromatic number 3, chromatic index 3 and is both 3- vertex-connected and 3- edge-connected. The Wagner graph has 392 spanning trees; it and the complete graph have the most spanning trees among all cubic graphs with the same number of vertices. The Wagner graph is a vertex-transitive graph but is not edge-transitive. Its full automorphism group is isomorphic to the dihedral group of order 16, the group of symmetries of an octagon, including both rotations and reflections. The characteristic polynomial of the Wagner graph is :(x-3)(x-1)^2(x+1)(x^2+2x-1)^2. It i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independence Number
Independence is a condition of a person, nation, country, or Sovereign state, state in which residents and population, or some portion thereof, exercise self-government, and usually sovereignty, over its territory. The opposite of independence is the status of a dependent territory. The commemoration of the independence day of a country or nation celebrates when a country is free from all forms of foreign colonialism; free to build a country or nation without any interference from other nations. Definition of independence Whether the attainment of independence is different from revolution has long been contested, and has often been debated over the question of violence as Legitimacy (family law), legitimate means to achieving sovereignty. In general, revolutions aim only to redistribute power with or without an element of emancipation,such as in democratization ''within'' a state, which as such may remain unaltered. For example, the Mexican Revolution (1910) chiefly refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ramsey Number
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petersen Graph
In the mathematics, mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertex (graph theory), vertices and 15 edge (graph theory), edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest Bridge (graph theory), bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by . Kempe observed that its vertices can represent the ten lines of the Desargues configuration, and its edges represent pairs of lines that do not meet at one of the ten points of the configuration. Donald Knuth states that the Petersen graph is "a remarkable configuration that serves as a counterexample to many optimistic predictions about what might be true for graphs in general." The Petersen graph also makes an appearanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]