HOME



picture info

Abductive Reasoning
Abductive reasoning (also called abduction,For example: abductive inference, or retroduction) is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by American philosopher and logician Charles Sanders Peirce beginning in the latter half of the 19th century. Abductive reasoning, unlike deductive reasoning, yields a plausible conclusion but does not definitively verify it. Abductive conclusions do not eliminate uncertainty or doubt, which is expressed in terms such as "best available" or "most likely". While inductive reasoning draws general conclusions that apply to many situations, abductive conclusions are confined to the particular observations in question. In the 1990s, as computing power grew, the fields of law, computer science, and artificial intelligence researchFor examples, see "", John R. Josephson, Laboratory for Artificial Intelligence Research, Ohio State University, and ''Abduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mastermind Beispiel Png
Mastermind, Master Mind or The Mastermind may refer to: Fictional characters * Mastermind (Jason Wyngarde), a fictional supervillain in Marvel Comics, a title also held by his daughters: ** Martinique Jason, the first daughter and successor of the Mastermind ** Lady Mastermind, the second daughter and successor of the Mastermind * Mastermind (computer), a character in Marvel Comics' ''Captain Britain'' * Mastermind, an enemy of the Challengers of the Unknown in DC Comics * Mastermind, the leader of the Ministry of Pain in "Fallen Arches", List of The Powerpuff Girls episodes#ep27, season 3, episode 1a of ''The Powerpuff Girls'' (1998) (2000) * Master Mind, an Image Comics villain who first appeared in ''Invincible (comics), Invincible'' #31 (April 2006) Literature * ''The Master Mind; or, The Key to Mental Power Development and Efficiency'', a 1913 non-fiction book by William Walker Atkinson, writing as Theron Q. Dumont * "The Master Mind" (1913), a Semi-Dual short story by John Ul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Synthese
''Synthese'' () is a monthly peer-reviewed academic journal covering the epistemology, methodology, and philosophy of science, and related issues. The name ''Synthese'' (from the Dutch for '' synthesis'') finds its origin in the intentions of its founding editors: making explicit the supposed internal coherence between the different, highly specialised scientific disciplines. Jaakko Hintikka was editor-in-chief from 1965 to 2002. The current editors-in-chief are Otávio Bueno (University of Miami), Wiebe van der Hoek (University of Liverpool), and Kristie Miller (University of Sydney). Editorial decision controversies In 2011, the journal became involved in a controversy over intelligent design. The printed version of the special issue ''Evolution and Its Rivals'', which appeared two years after the online version, was supplied with a disclaimer from the then editors of the journal that "appeared to undermine he authorsand the guest editors". The journal engendered controversy a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Tableaux
In proof theory, the semantic tableau (; plural: tableaux), also called an analytic tableau, truth tree, or simply tree, is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics. A method of truth trees contains a fixed set of rules for producing trees from a given logical formula, or set of logical formulas. Those trees will have more formulas at each branch, and in some cases, a branch can come to contain both a formula and its negation, which is to say, a contradiction. In that case, the branch is said to close. If every branch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicity
Simplicity is the state or quality of being wikt:simple, simple. Something easy to understand or explain seems simple, in contrast to something complicated. Alternatively, as Herbert A. Simon suggests, something is simple or Complexity, complex depending on the way we choose to describe it. In some uses, the label "simplicity" can imply beauty, purity, or clarity. In other cases, the term may suggest a lack of nuance or complexity relative to what is required. The concept of simplicity is related to the field of epistemology and philosophy of science (e.g., in Occam's razor). Religions also reflect on simplicity with concepts such as divine simplicity. In human Lifestyle (sociology), lifestyles, simplicity can denote freedom from excessive possessions or distractions, such as having a simple living style. In some cases, the term may have negative connotations, as when referring to someone as a simpleton. In philosophy of science There is a widespread philosophical presumption t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Literal (mathematical Logic)
Literal may refer to: * Interpretation of legal concepts: ** Strict constructionism ** The plain meaning rule (a.k.a. "literal rule") * Literal (mathematical logic), certain logical roles taken by propositions * Literal (computer programming), a fixed value in a program's source code * Biblical literalism * Titled works: ** Literal (magazine), ''Literal'' (magazine) ** Three-issue series Fables (comics)#The Literals, ''The Literals'', in ''Fables'' comics franchise See also

* Literal and figurative language * Literal translation * Literalism (other) * Littoral (other) * ''Literally'', English adverb {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistent
In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when there is no formula \varphi such that \varphi \in \langle A \rangle and \lnot \varphi \in \langle A \rangle. A ''trivial'' theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of Discourse
In the formal sciences, the domain of discourse or universe of discourse (borrowing from the mathematical concept of ''universe'') is the set of entities over which certain variables of interest in some formal treatment may range. It is also defined as the collection of objects being discussed in a specific discourse. In model-theoretical semantics, a universe of discourse is the set of entities that a model is based on. The domain of discourse is usually identified in the preliminaries, so that there is no need in the further treatment to specify each time the range of the relevant variables. Many logicians distinguish, sometimes only tacitly, between the ''domain of a science'' and the ''universe of discourse of a formalization of the science''. Etymology The concept ''universe of discourse'' was used for the first time by George Boole (1854) on page 42 of his '' Laws of Thought'': The concept, probably discovered independently by Boole in 1847, played a crucial role i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Theory
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an " axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Explanation
An explanation is a set of statements usually constructed to describe a set of facts that clarifies the causes, context, and consequences of those facts. It may establish rules or laws, and clarifies the existing rules or laws in relation to any objects or phenomena examined. In philosophy, an explanation is a set of statements which render understandable the existence or occurrence of an object, event, or state of affairs. Among its most common forms are: * Causal explanation * Deductive-nomological explanation, involves subsuming the explanandum under a generalization from which it may be derived in a deductive argument. For example, “All gases expand when heated; this gas was heated; therefore, this gas expanded". * Statistical explanation, involves subsuming the explanandum under a generalization that gives it inductive support. For example, “Most people who use tobacco contract cancer; this person used tobacco; therefore, this person contracted cancer”. Explan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]