3-jm Symbol
In quantum mechanics, the Wigner's 3-j symbols, also called 3''-jm'' symbols, are an alternative to Clebsch–Gordan coefficients for the purpose of adding angular momenta. While the two approaches address exactly the same physical problem, the 3-''j'' symbols do so more symmetrically. Mathematical relation to Clebsch–Gordan coefficients The 3-''j'' symbols are given in terms of the Clebsch–Gordan coefficients by : \begin j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end \equiv \frac \langle j_1 \, m_1 \, j_2 \, m_2 , j_3 \, (-m_3) \rangle. The ''j'' and ''m'' components are angular-momentum quantum numbers, i.e., every (and every corresponding ) is either a nonnegative integer or half-odd-integer. The exponent of the sign factor is always an integer, so it remains the same when transposed to the left, and the inverse relation follows upon making the substitution : : \langle j_1 \, m_1 \, j_2 \, m_2 , j_3 \, m_3 \rangle = (-1)^ \sqrt \begin j_1 & j_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clebsch–Gordan Coefficients
In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In more mathematical terms, the CG coefficients are used in representation theory, particularly of compact Lie groups, to perform the explicit direct sum decomposition of the tensor product of two irreducible representations (i.e., a reducible representation into irreducible representations, in cases where the numbers and types of irreducible components are already known abstractly). The name derives from the German mathematicians Alfred Clebsch and Paul Gordan, who encountered an equivalent problem in invariant theory. From a vector calculus perspective, the CG coefficients associated with the SO(3) group can be defined simply in terms of integrals of products of spherical harmonics and their complex conjugates. The addition of spins in quant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot. Classical physics can describe many aspects of nature at an ordinary (macroscopic and Microscopic scale, (optical) microscopic) scale, but is not sufficient for describing them at very small submicroscopic (atomic and subatomic) scales. Classical mechanics can be derived from quantum mechanics as an approximation that is valid at ordinary scales. Quantum systems have Bound state, bound states that are Quantization (physics), quantized to Discrete mathematics, discrete values of energy, momentum, angular momentum, and ot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Group
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces. Compact Lie groups Lie groups form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include * the circle group T and the torus groups T''n'', * the orthogonal group O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''), * the unitary group U(''n'') and the special unitary group SU(''n''), * the compact forms of the exceptional Lie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relation To Group Theory
Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * Public relations, managing the spread of information to the public * Sexual relations, or human sexual activity * Social relation, in social science, any social interaction between two or more individuals Logic and philosophy * Relation (philosophy), links between properties of an object * Relational theory, framework to understand reality or a physical system Mathematics A finitary or ''n''-ary relation is a set of ''n''-tuples. Specific types of relations include: * Relation (mathematics) (an elementary treatment of binary relations) * Binary relation (or diadic relation – a more in-depth treatment of binary relations) * Equivalence relation * Homogeneous relation * Reflexive relation * Serial relation * Ternary relation (or tri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trivial Representation
In the mathematical field of representation theory, a trivial representation is a representation of a group ''G'' on which all elements of ''G'' act as the identity mapping of ''V''. A trivial representation of an associative or Lie algebra is a ( Lie) algebra representation for which all elements of the algebra act as the zero linear map ( endomorphism) which sends every element of ''V'' to the zero vector. For any group or Lie algebra, an irreducible trivial representation always exists over any field, and is one-dimensional, hence unique up to isomorphism. The same is true for associative algebras unless one restricts attention to unital algebra In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition ...s and unital representations. Although the trivial representation is construct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product Of Representations
In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few. Definition Group representations If V_1, V_2 are linear representations of a group G, then their tensor product is the tensor product of vector spaces V_1 \otimes V_2 with the linear action of G uniquely determined by the condition that :g \cdot (v_1 \otimes v_2) = (g\cdot v_1) \otimes (g\cdot v_2) for all v_1\in V_1 and v_2\in V_2. Although not every element of V_1 \otimes V_2 is expressible in the form v_1\otimes v_2, the universal property of the tensor product guarantees that this action is well-defined. In the language of homomorphisms, if the actions of G on V_1 and V_2 are given by homomorphisms \Pi_1: G\to\operatorname(V_1) and \Pi_2: G\to\op ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Representation Theory Of SU(2)
In the study of the representation theory of Lie groups, the study of representations of SU(2) is fundamental to the study of representations of semisimple Lie groups. It is the first case of a Lie group that is both a compact group and a non-abelian group. The first condition implies the representation theory is discrete: representations are direct sums of a collection of basic irreducible representations (governed by the Peter–Weyl theorem). The second means that there will be irreducible representations in dimensions greater than 1. SU(2) is the universal covering group of SO(3), and so its representation theory includes that of the latter, by dint of a surjective homomorphism to it. This underlies the significance of SU(2) for the description of non-relativistic spin in theoretical physics; see below for other physical and historical context. As shown below, the finite-dimensional irreducible representations of SU(2) are indexed by a non-negative integer m and have di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The simplest case, , is the trivial group, having only a single element. The group is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covering Group
In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous (topology), continuous group homomorphism. The map ''p'' is called the covering homomorphism. A frequently occurring case is a double covering group, a double cover (topology), topological double cover in which ''H'' has Index of a subgroup, index 2 in ''G''; examples include the spin groups, pin groups, and metaplectic groups. Roughly explained, saying that for example the metaplectic group Mp2''n'' is a ''double cover'' of the symplectic group Sp2''n'' means that there are always two elements in the metaplectic group representing one element in the symplectic group. Properties Let ''G'' be a covering group of ''H''. The kernel (group theory), kernel ''K'' of the covering homomorphism is just the fiber over the identity in ''H'' and is a discrete group, discrete normal subgroup of ''G''. The kernel ''K'' i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |