∞-Yoneda Embedding
   HOME





∞-Yoneda Embedding
In mathematics, especially category theory, the 2-Yoneda lemma is a generalization of the Yoneda lemma to 2-categories. Precisely, given a contravariant pseudofunctor F on a category ''C'', it says: for each object x in ''C'', the natural functor (evaluation at the identity) :\underline(h_x, F) \to F(x) is an equivalence of categories, where \underline(-, -) denotes (roughly) the category of natural transformations between pseudofunctors on ''C'' and h_x = \operatorname(-, x). Under the Grothendieck construction, h_x corresponds to the comma category C \downarrow x. So, the lemma is also frequently stated as: :F(x) \simeq \underline(C \downarrow x, F), where F is identified with the fibered category associated to F. As an application of this lemma, the coherence theorem for bicategories holds. Sketch of proof First we define the functor in the opposite direction :\mu : F(x) \to \underline(h_x, F) as follows. Given an object \overline in F(x), define the natural transformat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoneda Lemma
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It also generalizes the information-preserving relation between a term and its continuation-passing style transformation from programming language theory. It allows the embedding of any locally small category into a category of functors ( contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda. Generalities The Yoneda lemma suggests that instead of studyi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2-category
In category theory in mathematics, a 2-category is a category with "morphisms between morphisms", called 2-morphisms. A basic example is the category Cat of all (small) categories, where a 2-morphism is a natural transformation between functors. The concept of a strict 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1967 by Jean BΓ©nabou. A (2, 1)-category is a 2-category where each 2-morphism is invertible. Definitions A strict 2-category By definition, a strict 2-category ''C'' consists of the data: * a class of 0-''cells'', * for each pairs of 0-cells a, b, a set \operatorname(a, b) called the set of 1-''cells'' from a to b, * for each pairs of 1-cells f, g in the same hom-set, a set \operatorname(f, g) called the set of 2-''cells'' from f to g, * ''ordinary compo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudofunctor
In mathematics, a pseudofunctor ''F'' is a mapping from a category to the category Cat of (small) categories that is just like a functor except that F(f \circ g) = F(f) \circ F(g) and F(1) = 1 do not hold as exact equalities but only up to '' coherent isomorphisms''. A typical example is an assignment to each pullback Ff = f^*, which is a contravariant pseudofunctor since, for example for a quasi-coherent sheaf \mathcal, we only have: (g \circ f)^* \mathcal \simeq f^* g^* \mathcal. Since Cat is a 2-category, more generally, one can also consider a pseudofunctor between 2-categories, where coherent isomorphisms are given as invertible 2-morphisms. The Grothendieck construction associates to a contravariant pseudofunctor a fibered category, and conversely, each fibered category is induced by some contravariant pseudofunctor. Because of this, a contravariant pseudofunctor, which is a category-valued presheaf, is often also called a prestack (a stack minus effective descent). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Construction
In category theory, a branch of mathematics, the category of elements of a presheaf is a category associated to that presheaf whose objects are the elements of sets in the presheaf. It and its generalization are also known as the Grothendieck construction (named after Alexander Grothendieck) especially in the theory of descent, in the theory of stacks, and in fibred category theory. The Grothendieck construction is an instance of straightening (or rather unstraightening). Significance In categorical logic, the construction is used to model the relationship between a type theory and a logic over that type theory, and allows for the translation of concepts from indexed category theory into fibred category theory, such as Lawvere's concept of hyperdoctrine. The category of elements of a simplicial set is fundamental in simplicial homotopy theory, a branch of algebraic topology. More generally, the category of elements plays a key role in the proof that every weighted colimit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comma Category
In mathematics, a comma category (a special case being a slice category) is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a Category (mathematics), category to one another, morphisms become objects in their own right. This notion was introduced in 1963 by William Lawvere, F. W. Lawvere (Lawvere, 1963 p. 36), although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some Limit (category theory), limits and colimits. The name comes from the notation originally used by Lawvere, which involved the comma punctuation mark. The name persists even though standard notation has changed, since the use of a comma as an operator is potentially confusing, and even Lawvere dislikes the uninformative term "comma category" (Lawvere, 1963 p. 13). Definition The most general comma ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibered Category
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space ''X'' to another topological space ''Y'' is associated the pullback functor taking bundles on ''Y'' to bundles on ''X''. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semantics of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modification (mathematics)
In mathematics, specifically category theory, a modification is an arrow between natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...s. It is a 3-cell in the 3-category of 2-cells (where the 2-cells are natural transformations, the 1-cells are functors, and the 0-cells are categories). The notion is due to BΓ©nabou. Given two natural transformations \boldsymbol : \boldsymbol \rightarrow \boldsymbol, there exists a modification \boldsymbol : \boldsymbol \rightarrow \boldsymbol such that: * \boldsymbol : \boldsymbol \rightarrow \boldsymbol, * \boldsymbol : \boldsymbol \rightarrow \boldsymbol, and * \boldsymbol : \boldsymbol \rightarrow \boldsymbol . The following commutative diagram shows an example of a modification and its inner workings. References *{ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a Category (mathematics), category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

∞-category Of Kan Complexes
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For various kinds of fibrations for simplicial sets, see Fibration of simplicial sets. Definitions Definition of the standard n-simplex For each ''n'' β‰₯ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of \mathbb^ consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' β‰€ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn ins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hom-functor For ∞-categories
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]