∞-Chern–Weil Theory
   HOME





∞-Chern–Weil Theory
In mathematics, ∞-Chern–Weil theory is a generalized formulation of Chern–Weil theory from differential geometry using the formalism of higher category theory. The theory is named after Shiing-Shen Chern and André Weil, who first constructed the Chern–Weil homomorphism in the 1940s, although the generalization was not developed by them. Generalization There are three equivalent ways to describe the k-th Chern class of complex vector bundles of rank n, which is as a: * (1-categorical) natural transformation ,\operatorname(n)Rightarrow ,K(\mathbb,2k)/math> * homotopy class of a continuous map \operatorname(n)\rightarrow K(\mathbb,2k) * singular cohomology class in H^(\operatorname(n),\mathbb) \operatorname(n) is the classifying space for the unitary group \operatorname(n) and K(\mathbb,2k) is an Eilenberg–MacLane space, which represent the set of complex vector bundles of rank n with ,\operatorname(n)cong\operatorname_\mathbb^n(-) and singular cohomology with ,K(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoneda Lemma
In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the embedding of any locally small category into a category of functors (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda. Generalities The Yoneda lemma suggests that instead of studying the locally small category \mathcal , one should study the category of all functors of \mathcal into \mathbf (the category of sets wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-Chern–Simons Theory
In mathematics, ∞-Chern–Simons theory (not to be confused with infinite-dimensional Chern–Simons theory) is a generalized formulation of Chern–Simons theory from differential geometry using the formalism of higher category theory, which in particular studies ∞-categories. It is obtained by taking general abstract analogs of all involved concepts defined in any cohesive ∞-topos, for example that of smooth ∞-groupoids. Principal bundles on which Lie groups act are for example replaced by ∞-principal bundles on with group objects in ∞-topoi act.Definition in Schreiber 2013, 1.2.6.5.2 The theory is named after Shiing-Shen Chern and James Simons, who first described Chern–Simons forms in 1974, although the generalization was not developed by them. See also * ∞-Chern–Weil theory Literature * * * * {{cite arXiv , arxiv=1301.2580 , author1=Domenico Fiorenza , author2=Hisham Sati , author3=Urs Schreiber Urs Schreiber (born 1974) is a mathematician sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forgetful Functor
In mathematics, in the area of category theory, a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case. Overview As an example, there are several forgetful functors from the category of commutative rings. A ( unital) ring, described in the language of universal algebra, is an ordered tuple (R,+,\times,a,0,1) satisfying certain axioms, where + and \times are binary functions on the set R, a is a unary operation corresponding to additive inverse, and 0 and 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Rham Cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of "holes" in the manifold, and the de Rham cohomology groups comprise a set of topological invariants of smooth manifolds that precisely quantify this relationship. Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold , with the exterior derivative as the differential: :0 \to \Omega^0(M)\ \stackrel\ \Omega^1(M)\ \stackrel\ \Omega^2(M)\ \stackrel\ \Omega^3(M) \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Georges De Rham
Georges de Rham (; 10 September 1903 – 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology. Biography Georges de Rham was born on 10 September 1903 in Roche, a small village in the canton of Vaud in Switzerland. He was the fifth born of the six children in the family of Léon de Rham, a constructions engineer. Georges de Rham grew up in Roche but went to school in nearby Aigle, the main town of the district, travelling daily by train. By his own account, he was not an extraordinary student in school, where he mainly enjoyed painting and dreamed of becoming a painter. In 1919 he moved with his family to Lausanne in a rented apartment in Beaulieu Castle, where he would live for the rest of his life. Georges de Rham started the Gymnasium in Lausanne with a focus on humanities, following his passion for literature and philosophy but learning little mathematics. On graduating from the Gymnasium in 1921 however, he decided not to continue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopy Fiber
In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber)Joseph J. Rotman, ''An Introduction to Algebraic Topology'' (1988) Springer-Verlag ''(See Chapter 11 for construction.)'' is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces f:A \to B. It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups\cdots \to \pi_(B) \to \pi_n(\text(f)) \to \pi_n(A) \to \pi_n(B) \to \cdotsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangleC(f)_\bullet 1\to A_\bullet \to B_\bullet \xrightarrowgives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber. Construction The homotopy fiber has a simple description for a continuous map f:A \to B. If we replace f by a f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Counit (category Theory)
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal   and   G: \mathcal \rightarrow \mathcal and, for all objects X in \mathcal and Y in \mathcal a bijection between the respective morphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental ∞-groupoid
Fundamental may refer to: * Foundation of reality * Fundamental frequency, as in music or phonetics, often referred to as simply a "fundamental" * Fundamentalism, the belief in, and usually the strict adherence to, the simple or "fundamental" ideas based on faith in a system of thought * ''The Fundamentals'', a set of books important to Christian fundamentalism * Any of a number of fundamental theorems identified in mathematics, such as: ** Fundamental theorem of algebra, awe theorem regarding the factorization of polynomials ** Fundamental theorem of arithmetic, a theorem regarding prime factorization * Fundamental analysis, the process of reviewing and analyzing a company's financial statements to make better economic decisions Music * Fun-Da-Mental, a rap group * ''Fundamental'' (Bonnie Raitt album), 1998 * ''Fundamental'' (Pet Shop Boys album) * ''Fundamental'' (Puya album), 1999 * ''Fundamental'' (Mental As Anything album) * ''The Fundamentals'' (album) Other uses * " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-topos
In mathematics, an ∞-topos is, roughly, an ∞-category such that its objects behave like sheaves of spaces with some choice of Grothendieck topology; in other words, it gives an intrinsic notion of sheaves without reference to an external space. The prototypical example of an ∞-topos is the ∞-category of sheaves of spaces on some topological space. But the notion is more flexible; for example, the ∞-category of étale sheaves on some scheme is not the ∞-category of sheaves on any topological space but it is still an ∞-topos. Precisely, in Lurie's ''Higher Topos Theory'', an ∞-topos is defined as an ∞-category ''X'' such that there is a small ∞-category ''C'' and a left exact localization functor from the ∞-category of presheaves of spaces on ''C'' to ''X''. A theorem of Lurie states that an ∞-category is an ∞-topos if and only if it satisfies an ∞-categorical version of Giraud's axioms in ordinary topos theory. A "topos" is a category behaving like th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an ''A''∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of Ω''X'', i.e. the set of based-homotopy equivalence classes of based loops in ''X'', is a group, the fundamental group ''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a functor, the free loop space constructio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]