HOME





ε-net (computational Geometry)
In computational geometry, an ''ε''-net (pronounced epsilon-net) is the approximation of a general set by a collection of simpler subsets. In probability theory it is the approximation of one probability distribution by another. Background Let ''X'' be a set and R be a set of subsets of ''X''; such a pair is called a ''range space'' or hypergraph, and the elements of ''R'' are called ''ranges'' or ''hyperedges''. An ε-net of a subset ''P'' of ''X'' is a subset ''N'' of ''P'' such that any range ''r'' ∈ R with , ''r'' ∩ ''P'',  ≥ ''ε'', ''P'', intersects ''N''.. In other words, any range that intersects at least a proportion ε of the elements of ''P'' must also intersect the ''ε''-net ''N''. For example, suppose ''X'' is the set of points in the two-dimensional plane, ''R'' is the set of closed filled rectangles (products of closed intervals), and ''P'' is the unit square , 1nbsp;×  , 1 Then the set N consis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epsilon
Epsilon (, ; uppercase , lowercase or ; ) is the fifth letter of the Greek alphabet, corresponding phonetically to a mid front unrounded vowel or . In the system of Greek numerals it also has the value five. It was derived from the Phoenician alphabet, Phoenician letter He (letter), He . Letters that arose from epsilon include the Roman E, Ë and Latin epsilon, Ɛ, and Cyrillic Ye (Cyrillic), Е, Ye with grave, È, Yo (Cyrillic), Ё, Ukrainian Ye, Є and E (Cyrillic), Э. The name of the letter was originally (), but it was later changed to ( 'simple e') in the Middle Ages to distinguish the letter from the digraph (orthography), digraph , a former diphthong that had come to be pronounced the same as epsilon. The uppercase form of epsilon is identical to Latin but has its own code point in Unicode: . The lowercase version has two typographical variants, both inherited from history of the Greek alphabet, medieval Greek handwriting. One, the most common in modern typograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Square ɛ-net
Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, historical units of measurement used in England up to 1824 ** Unit of length Science and technology Physical sciences * Natural unit, a physical unit of measurement * Geological unit or rock unit, a volume of identifiable rock or ice * Astronomical unit, a unit of length roughly between the Earth and the Sun Chemistry and medicine * Equivalent (chemistry), a unit of measurement used in chemistry and biology * Unit, a vessel or section of a chemical plant * Blood unit, a measurement in blood transfusion * Enzyme unit, a measurement of active enzyme in a sample * International unit, a unit of measurement for nutrients and drugs Mathematics * Unit number, the number 1 * Unit, identity element * Unit (ring theory), an element that is i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypergraph
In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair (X,E), where X is a set of elements called ''nodes'', ''vertices'', ''points'', or ''elements'' and E is a set of pairs of subsets of X. Each of these pairs (D,C)\in E is called an ''edge'' or ''hyperedge''; the vertex subset D is known as its ''tail'' or ''domain'', and C as its ''head'' or ''codomain''. The order of a hypergraph (X,E) is the number of vertices in X. The size of the hypergraph is the number of edges in E. The order of an edge e=(D,C) in a directed hypergraph is , e, = (, D, ,, C, ): that is, the number of vertices in its tail followed by the number of vertices in its head. The definition above generalizes from a directed graph to a directed hypergraph by defining the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * '' Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate, formerly the Institute for Scientific Information and Thomson Reuters. It is published online and in several different printed subject sections. History ''Current Contents ...'' Notable articles Two articles published in ''Discrete & Computational Geometry'', one by Gil Kalai in 1992 with a proof of a subexponential upper bound on the diameter of a polytope and another by Samuel Ferguson in 2006 on the Kepler conjecture on optimal three-dimensional sphere packing, earned their authors the Fulk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




VC Dimension
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and other Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, California * Viet Cong, a political and military organization during the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US * Ventura College, US Places * Saint Vincent and the Grenadines (ISO country code) * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Britain or Ireland * Ventura County, in S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, NP-complete problems are the hardest of the problems to which ''solutions'' can be verified ''quickly''. Somewhat more precisely, a problem is NP-complete when: # It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". # When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) ''solution''. # The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # The problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. Hence, if we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hitting Set Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. Given a set of elements (henceforth referred to as the universe, specifying all possible elements under consideration) and a collection, referred to as , of a given subsets whose union equals the universe, the set cover problem is to identify a smallest sub-collection of whose union equals the universe. For example, consider the universe, and the collection of sets In this example, is equal to 4, as there are four subsets that comprise this collection. The union of is equal to . However, we can cover all elements with only two sets: , see picture, but not with only one set. Therefore, the solution to the set cover problem for this and has size 2. More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a set cover is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. * In the set cover decis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Cover Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. Given a set of elements (henceforth referred to as the universe, specifying all possible elements under consideration) and a collection, referred to as , of a given subsets whose union equals the universe, the set cover problem is to identify a smallest sub-collection of whose union equals the universe. For example, consider the universe, and the collection of sets In this example, is equal to 4, as there are four subsets that comprise this collection. The union of is equal to . However, we can cover all elements with only two sets: , see picture, but not with only one set. Therefore, the solution to the set cover problem for this and has size 2. More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a set cover is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. * In the set cover deci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical description of a Randomness, random phenomenon in terms of its sample space and the Probability, probabilities of Event (probability theory), events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that fair coin, the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random values. Probability distributions can be defined in different ways and for discrete or for continuous variables. Distributions with special properties or for especially important applications are given specific names. Introduction A prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]