Šidák Correction For T-test
   HOME





Šidák Correction For T-test
One of the application of Student's t-test is to test the location of one sequence of independent and identically distributed random variables. If we want to test the locations of multiple sequences of such variables, Šidák correction should be applied in order to calibrate the level of the Student's t-test. Moreover, if we want to test the locations of nearly infinitely many sequences of variables, then Šidák correction should be used, but with caution. More specifically, the validity of Šidák correction depends on how fast the number of sequences goes to infinity. Introduction Suppose we are interested in different hypotheses, H_,...,H_ , and would like to check if all of them are true. Now the hypothesis test scheme becomes : H_ : all of H_ are true; : H_: at least one of H_ is false. Let \alpha be the level of this test (the type-I error), that is, the probability that we falsely reject H_ when it is true. We aim to design a test with certain level \al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Student's T-test
Student's ''t''-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's ''t''-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known (typically, the scaling term is unknown and is therefore a nuisance parameter). When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's ''t'' distribution. The ''t''-test's most common application is to test whether the means of two populations are significantly different. In many cases, a ''Z''-test will yield very similar results to a ''t''-test because the latter converges to the former as the size of the dataset increases. History The term "''t''-statistic" is abbreviated from " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Independent And Identically Distributed Random Variables
Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in Pennsylvania, United States * Independentes (English: Independents), a Portuguese artist group Music Groups, labels, and genres * Independent music, a number of genres associated with independent labels * Independent record label, a record label not associated with a major label * Independent Albums, American albums chart Albums * ''Independent'' (Ai album), 2012 * ''Independent'' (Faze album), 2006 * ''Independent'' (Sacred Reich album), 1993 Songs * "Independent" (song), a 2007 song by Webbie * "Independent", a 2002 song by Ayumi Hamasaki from '' H'' News media organizations * Independent Media Center (also known as Indymedia or IMC), an open publishing network of journalist collectives that report on political and social issues, e.g., in ''The Indypendent'' newspaper of NYC * ITV (TV network) (Independent Televi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Šidák Correction
In statistics, the Šidák correction, or Dunn–Šidák correction, is a method used to counteract the problem of multiple comparisons. It is a simple method to control the family-wise error rate. When all null hypotheses are true, the method provides familywise error control that is exact for tests that are stochastically independent, conservative for tests that are positively dependent, and liberal for tests that are negatively dependent. It is credited to a 1967 paper by the statistician A statistician is a person who works with Theory, theoretical or applied statistics. The profession exists in both the private sector, private and public sectors. It is common to combine statistical knowledge with expertise in other subjects, a ... and probabilist Zbyněk Šidák. The Šidák method can be used to adjust alpha levels, p-values, or confidence intervals. Usage * Given ''m'' different null hypotheses and a familywise alpha level of \alpha, each null hypothesis is rejec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-statistic
In statistics, the ''t''-statistic is the ratio of the difference in a number’s estimated value from its assumed value to its standard error. It is used in hypothesis testing via Student's ''t''-test. The ''t''-statistic is used in a ''t''-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that ''t''-statistic is used when the sample size is small or the population standard deviation is unknown. For example, the ''t''-statistic is used in estimating the population mean from a sampling distribution of sample means if the population standard deviation is unknown. It is also used along with p-value when running hypothesis tests where the p-value tells us what the odds are of the results to have happened. Definition and features Let \hat\beta be an estimator of parameter ''β'' in some statistical model. Then a ''t''-statistic for this parameter is any quantity of the form : t_ = \frac, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High-dimensional Statistics
In statistical theory, the field of high-dimensional statistics studies data whose dimension is larger (relative to the number of datapoints) than typically considered in classical multivariate analysis. The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking. There are several notions of high-dimensional analysis of statistical methods including: * Non-asymptotic results which apply for finite n,p (number of data points and dimension size, respectively). * Kolmogorov asymptotics which studies the asymptotic behavior where the ratio n/p is converges to a specific finite value. Examples Parameter estimation in linear models The most basic statistical model for the relationship between a covariate vector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bootstrapping
In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Many analytical techniques are often called bootstrap methods in reference to their self-starting or self-supporting implementation, such as bootstrapping (statistics), bootstrapping (finance), or bootstrapping (linguistics). Etymology Tall boots may have a tab, loop or handle at the top known as a bootstrap, allowing one to use fingers or a boot hook tool to help pull the boots on. The saying "to " was already in use during the 19th century as an example of an impossible task. The idiom dates at least to 1834, when it appeared in the ''Workingman's Advocate'': "It is conjectured that Mr. Murphee will now be enabled to hand himself over the Cumberland river or a barn yard fence by the straps of his boots."Jan FreemanBootstraps and Baron Munchausen '' Boston.com'', January 27, 2009 In 1860 it appeared in a comment about philosophy of mind: "The a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Limit Theorem
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distribution, standard normal distribution. This holds even if the original variables themselves are not Normal distribution, normally distributed. There are several versions of the CLT, each applying in the context of different conditions. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions. This theorem has seen many changes during the formal development of probability theory. Previous versions of the theorem date back to 1811, but in its modern form it was only precisely stated as late as 1920. In statistics, the CLT can be stated as: let X_1, X_2, \dots, X_n denote a Sampling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Comparisons
Multiple comparisons, multiplicity or multiple testing problem occurs in statistics when one considers a set of statistical inferences simultaneously or estimates a subset of parameters selected based on the observed values. The larger the number of inferences made, the more likely erroneous inferences become. Several statistical techniques have been developed to address this problem, for example, by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made. Methods for family-wise error rate give the probability of false positives resulting from the multiple comparisons problem. History The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bonferroni Correction
In statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem. Background The method is named for its use of the Bonferroni inequalities. Application of the method to confidence intervals was described by Olive Jean Dunn. Statistical hypothesis testing is based on rejecting the null hypothesis when the likelihood of the observed data would be low if the null hypothesis were true. If multiple hypotheses are tested, the probability of observing a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I error) increases. The Bonferroni correction compensates for that increase by testing each individual hypothesis at a significance level of \alpha/m, where \alpha is the desired overall alpha level and m is the number of hypotheses. For example, if a trial is testing m = 20 hypotheses with a desired overall \alpha = 0.05, then the Bonferroni correction would test each individual hypot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Family-wise Error Rate
In statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. Familywise and experimentwise error rates John Tukey developed in 1953 the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Based on Tukey (1953), Ryan (1959) proposed the related concept of an ''experimentwise error rate'', which is the probability of making a Type I error in a given experiment. Hence, an experimentwise error rate is a familywise error rate where the family includes all the tests that are conducted within an experiment. As Ryan (1959, Footnote 3) explained, an experiment may contain two or more families of multiple comparisons, each of which relates to a particular statistical inference and each of which has its own separate familywise error rate. Hence, familywise error rates are usually based on theoretically informative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Testing Procedure
In statistics, the closed testing procedure is a general method for performing more than one hypothesis test simultaneously. The closed testing principle Suppose there are ''k'' hypotheses ''H''1,..., ''H''''k'' to be tested and the overall type I error rate is α. The closed testing principle allows the rejection of any one of these elementary hypotheses, say ''H''''i'', if all possible intersection hypotheses involving ''H''''i'' can be rejected by using valid local level α tests; the adjusted p-value is the largest among those hypotheses. It controls the family-wise error rate for all the ''k'' hypotheses at level α in the strong sense. Example Suppose there are three hypotheses ''H''1,''H''2, and ''H''3 to be tested and the overall type I error rate is 0.05. Then ''H''1 can be rejected at level α if ''H''1 ∩ ''H''2 ∩ ''H''3, ''H''1 ∩ ''H''2, ''H''1 ∩ ''H''3 and ''H''1 can all be rejected using valid tests with level α. Special cases The Holm–Bonferroni meth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]