vector field

TheInfoList

In and physics, a vector field is an assignment of a to each point in a subset of . For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some , such as the or force, as it changes from one point to another point. The elements of extend naturally to vector fields. When a vector field represents , the of a vector field represents the done by a force moving along a path, and under this interpretation is exhibited as a special case of the . Vector fields can usefully be thought of as representing the velocity of a moving flow in space, and this physical intuition leads to notions such as the (which represents the rate of change of volume of a flow) and (which represents the rotation of a flow). In coordinates, a vector field on a domain in ''n''-dimensional can be represented as a that associates an ''n''-tuple of real numbers to each point of the domain. This representation of a vector field depends on the coordinate system, and there is a well-defined in passing from one coordinate system to the other. Vector fields are often discussed on of Euclidean space, but also make sense on other subsets such as s, where they associate an arrow tangent to the surface at each point (a ). More generally, vector fields are defined on s, which are spaces that look like Euclidean space on small scales, but may have more complicated structure on larger scales. In this setting, a vector field gives a tangent vector at each point of the manifold (that is, a of the to the manifold). Vector fields are one kind of .

# Definition

## Vector fields on subsets of Euclidean space

Given a subset in , a vector field is represented by a in standard . If each component of is continuous, then is a continuous vector field, and more generally is a vector field if each component of is times . A vector field can be visualized as assigning a vector to individual points within an ''n''-dimensional space. Given two -vector fields , defined on and a real-valued -function defined on , the two operations scalar multiplication and vector addition :$\left(fV\right)\left(p\right) := f\left(p\right)V\left(p\right)$ :$\left(V+W\right)\left(p\right) := V\left(p\right) + W\left(p\right)$ define the of -vector fields over the of -functions where the multiplication of the functions is defined pointwise (therefore, it is commutative with the multiplicative identity being ).

## Coordinate transformation law

In physics, a is additionally distinguished by how its coordinates change when one measures the same vector with respect to a different background coordinate system. The distinguish a vector as a geometrically distinct entity from a simple list of scalars, or from a . Thus, suppose that (''x''1,...,''x''''n'') is a choice of Cartesian coordinates, in terms of which the components of the vector ''V'' are :$V_x = \left(V_,\dots,V_\right)$ and suppose that (''y''1,...,''y''''n'') are ''n'' functions of the ''x''''i'' defining a different coordinate system. Then the components of the vector ''V'' in the new coordinates are required to satisfy the transformation law Such a transformation law is called . A similar transformation law characterizes vector fields in physics: specifically, a vector field is a specification of ''n'' functions in each coordinate system subject to the transformation law () relating the different coordinate systems. Vector fields are thus contrasted with s, which associate a number or ''scalar'' to every point in space, and are also contrasted with simple lists of scalar fields, which do not transform under coordinate changes.

## Vector fields on manifolds

Given a $M$, a vector field on $M$ is an assignment of a to each point in $M$. More precisely, a vector field $F$ is a from $M$ into the $TM$ so that $p\circ F$ is the identity mapping where $p$ denotes the projection from $TM$ to $M$. In other words, a vector field is a of the . An alternative definition: A smooth vector field $X$ on a manifold $M$ is a $X: C^\infty\left(M\right) \rightarrow C^\infty\left(M\right)$ such that $X$ is a : $X\left(fg\right)=fX\left(g\right)+X\left(f\right)g$ for all $f,g \in C^\infty\left(M\right)$. If the manifold $M$ is smooth or —that is, the change of coordinates is smooth (analytic)—then one can make sense of the notion of smooth (analytic) vector fields. The collection of all smooth vector fields on a smooth manifold $M$ is often denoted by $\Gamma \left(TM\right)$ or $C^\infty \left(M,TM\right)$ (especially when thinking of vector fields as s); the collection of all smooth vector fields is also denoted by $\textstyle \mathfrak \left(M\right)$ (a "X").

# Examples

* A vector field for the movement of air on Earth will associate for every point on the surface of the Earth a vector with the wind speed and direction for that point. This can be drawn using arrows to represent the wind; the length () of the arrow will be an indication of the wind speed. A "high" on the usual map would then act as a source (arrows pointing away), and a "low" would be a sink (arrows pointing towards), since air tends to move from high pressure areas to low pressure areas. * field of a moving . In this case, a vector is associated to each point in the fluid. * are 3 types of lines that can be made from (time-dependent) vector fields. They are: *:streaklines: the line produced by particles passing through a specific fixed point over various times *:pathlines: showing the path that a given particle (of zero mass) would follow. *:streamlines (or fieldlines): the path of a particle influenced by the instantaneous field (i.e., the path of a particle if the field is held fixed). * s. The fieldlines can be revealed using small filings. * allow us to use a given set of initial and boundary conditions to deduce, for every point in , a magnitude and direction for the experienced by a charged test particle at that point; the resulting vector field is the . *A generated by any massive object is also a vector field. For example, the gravitational field vectors for a spherically symmetric body would all point towards the sphere's center with the magnitude of the vectors reducing as radial distance from the body increases.

## Gradient field in euclidean spaces

Vector fields can be constructed out of s using the operator (denoted by the : ∇). A vector field ''V'' defined on an open set ''S'' is called a gradient field or a if there exists a real-valued function (a scalar field) ''f'' on ''S'' such that :$V = \nabla f = \bigg\left(\frac, \frac, \frac, \dots ,\frac\bigg\right).$ The associated is called the , and is used in the method of . The along any ''γ'' (''γ''(0) = ''γ''(1)) in a conservative field is zero: :$\oint_\gamma V\left(\boldsymbol \right)\cdot \mathrm\boldsymbol = \oint_\gamma \nabla f\left(\boldsymbol \right)\cdot \mathrm\boldsymbol = f\left(\gamma\left(1\right)\right) - f\left(\gamma\left(0\right)\right).$

## Central field in euclidean spaces

A ''C''-vector field over R''n'' \ is called a central field if :$V\left(T\left(p\right)\right) = T\left(V\left(p\right)\right) \qquad \left(T \in \mathrm\left(n, \mathbf\right)\right)$ where O(''n'', R) is the . We say central fields are under around 0. The point 0 is called the center of the field. Since orthogonal transformations are actually rotations and reflections, the invariance conditions mean that vectors of a central field are always directed towards, or away from, 0; this is an alternate (and simpler) definition. A central field is always a gradient field, since defining it on one semiaxis and integrating gives an antigradient.

# Operations on vector fields

## Line integral

A common technique in physics is to integrate a vector field along a , also called determining its . Intuitively this is summing up all vector components in line with the tangents to the curve, expressed as their scalar products. For example, given a particle in a force field (e.g. gravitation), where each vector at some point in space represents the force acting there on the particle, the line integral along a certain path is the work done on the particle, when it travels along this path. Intuitively, it is the sum of the scalar products of the force vector and the small tangent vector in each point along the curve. The line integral is constructed analogously to the and it exists if the curve is rectifiable (has finite length) and the vector field is continuous. Given a vector field and a curve , by in (where and are s), the line integral is defined as :$\int_\gamma V\left(\boldsymbol \right)\cdot \mathrm\boldsymbol = \int_a^b V\left(\gamma\left(t\right)\right)\cdot\dot \gamma\left(t\right)\; \mathrmt.$

## Divergence

The of a vector field on Euclidean space is a function (or scalar field). In three-dimensions, the divergence is defined by :$\operatorname \mathbf = \nabla \cdot \mathbf = \frac + \frac+\frac,$ with the obvious generalization to arbitrary dimensions. The divergence at a point represents the degree to which a small volume around the point is a source or a sink for the vector flow, a result which is made precise by the . The divergence can also be defined on a , that is, a manifold with a that measures the length of vectors.

## Curl in three dimensions

The is an operation which takes a vector field and produces another vector field. The curl is defined only in three dimensions, but some properties of the curl can be captured in higher dimensions with the . In three dimensions, it is defined by :$\operatorname\,\mathbf = \nabla \times \mathbf = \left\left(\frac- \frac\right\right)\mathbf_1 - \left\left(\frac- \frac\right\right)\mathbf_2 + \left\left(\frac- \frac\right\right)\mathbf_3.$ The curl measures the density of the of the vector flow at a point, that is, the amount to which the flow circulates around a fixed axis. This intuitive description is made precise by .

## Index of a vector field

The index of a vector field is an integer that helps to describe the behaviour of a vector field around an isolated zero (i.e., an isolated singularity of the field). In the plane, the index takes the value -1 at a saddle singularity but +1 at a source or sink singularity. Let the dimension of the manifold on which the vector field is defined be n. Take a small sphere S around the zero so that no other zeros lie in the interior of S. A map from this sphere to a unit sphere of dimensions ''n'' − 1 can be constructed by dividing each vector on this sphere by its length to form a unit length vector, which is a point on the unit sphere Sn-1. This defines a continuous map from S to Sn-1. The index of the vector field at the point is the of this map. It can be shown that this integer does not depend on the choice of S, and therefore depends only on the vector field itself. The index of the vector field as a whole is defined when it has just a finite number of zeroes. In this case, all zeroes are isolated, and the index of the vector field is defined to be the sum of the indices at all zeroes. The index is not defined at any non-singular point (i.e., a point where the vector is non-zero). it is equal to +1 around a source, and more generally equal to (−1)k around a saddle that has k contracting dimensions and n-k expanding dimensions. For an ordinary (2-dimensional) sphere in three-dimensional space, it can be shown that the index of any vector field on the sphere must be 2. This shows that every such vector field must have a zero. This implies the , which states that if a vector in R3 is assigned to each point of the unit sphere S2 in a continuous manner, then it is impossible to "comb the hairs flat", i.e., to choose the vectors in a continuous way such that they are all non-zero and tangent to S2. For a vector field on a compact manifold with a finite number of zeroes, the states that the index of the vector field is equal to the of the manifold.

# Physical intuition

, in his concept of '','' emphasized that the field ''itself'' should be an object of study, which it has become throughout physics in the form of . In addition to the magnetic field, other phenomena that were modeled by Faraday include the electrical field and .

# Flow curves

Consider the flow of a fluid through a region of space. At any given time, any point of the fluid has a particular velocity associated with it; thus there is a vector field associated to any flow. The converse is also true: it is possible to associate a flow to a vector field having that vector field as its velocity. Given a vector field ''V'' defined on ''S'', one defines curves γ(''t'') on ''S'' such that for each ''t'' in an interval ''I'' :$\gamma\text{'}\left(t\right) = V\left(\gamma\left(t\right)\right)\,.$ By the , if ''V'' is there is a ''unique'' ''C''1-curve γ''x'' for each point ''x'' in ''S'' so that, for some ε > 0, :$\gamma_x\left(0\right) = x\,$ :$\gamma\text{'}_x\left(t\right) = V\left(\gamma_x\left(t\right)\right) \qquad \forall t \in \left(-\varepsilon, +\varepsilon\right) \subset \mathbf.$ The curves γ''x'' are called integral curves or trajectories (or less commonly, flow lines) of the vector field ''V'' and partition ''S'' into es. It is not always possible to extend the interval (−ε, +ε) to the whole . The flow may for example reach the edge of ''S'' in a finite time. In two or three dimensions one can visualize the vector field as giving rise to a on ''S''. If we drop a particle into this flow at a point ''p'' it will move along the curve γ''p'' in the flow depending on the initial point ''p''. If ''p'' is a stationary point of ''V'' (i.e., the vector field is equal to the zero vector at the point ''p''), then the particle will remain at ''p''. Typical applications are in , , and s and the in s.

By definition, a vector field is called complete if every one of its flow curves exist for all time. In particular, vector fields on a manifold are complete. If $X$ is a complete vector field on $M$, then the of s generated by the flow along $X$ exists for all time. On a compact manifold without boundary, every smooth vector field is complete. An example of an incomplete vector field $V$ on the real line $\mathbb R$ is given by $V\left(x\right) = x^2$. For, the differential equation $\frac = x^2$, with initial condition $x\left(0\right) = x_0$, has as its unique solution $x\left(t\right) = \frac$ if $x_0 \neq 0$ (and $x\left(t\right) = 0$ for all $t \in \mathbb R$ if $x_0 = 0$). Hence for $x_0 \neq 0$, $x\left(t\right)$ is undefined at $t = \frac$ so cannot be defined for all values of $t$.

# f-relatedness

Given a between manifolds, ''f'' : ''M'' → ''N'', the is an induced map on s, ''f''* : ''TM'' → ''TN''. Given vector fields ''V'' : ''M'' → ''TM'' and ''W'' : ''N'' → ''TN'', we say that ''W'' is ''f''-related to ''V'' if the equation ''W'' ∘ ''f'' = ''f'' ∘ ''V'' holds. If ''V''i is ''f''-related to ''W''i, ''i'' = 1, 2, then the 'V''1, ''V''2is ''f''-related to 'W''1, ''W''2

# Generalizations

Replacing vectors by (''p''th exterior power of vectors) yields ''p''-vector fields; taking the and exterior powers yields , and combining these yields general s. Algebraically, vector fields can be characterized as of the algebra of smooth functions on the manifold, which leads to defining a vector field on a commutative algebra as a derivation on the algebra, which is developed in the theory of .

* * * * in ' * * * * *

# Bibliography

* * *

Online Vector Field Editor
*

An interactive application to show the effects of vector fields {{DEFAULTSORT:Vector Field Vector calculus