real number line

TheInfoList

OR:

In elementary mathematics, a number line is a picture of a graduated straight
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
that serves as visual representation of the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s. Every point of a number line is assumed to correspond to a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
, and every real number to a point. The
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
, especially involving
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed m ...
s. In advanced mathematics, the number line can be called as a real line or real number line, formally defined as the set of all real numbers, viewed as a
geometric Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
, namely the
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
one. It can be thought of as a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ca ...
(or
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
), a
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
, a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called point ...
, a
measure space A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that i ...
, or a linear continuum. Just like the set of real numbers, the real line is usually denoted by the symbol (or alternatively, $\mathbb$, the letter “ R” in
blackboard bold Blackboard bold is a typeface style that is often used for certain symbols in mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote number sets. One way of pro ...
). However, it is sometimes denoted in order to emphasize its role as the first Euclidean space.

# History

The first mention of the number line used for operation purposes is found in
John Wallis John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the royal ...
's ''Treatise of algebra''. In his treatise, Wallis describes addition and subtraction on a number line in terms of moving forward and backward, under the metaphor of a person walking. An earlier depiction without mention to operations, though, is found in
John Napier John Napier of Merchiston (; 1 February 1550 – 4 April 1617), nicknamed Marvellous Merchiston, was a Scottish landowner known as a mathematician, physicist, and astronomer. He was the 8th Laird of Merchiston. His Latinized name was Ioann ...
's ''A description of the admirable table of logarithmes'', which shows values 1 through 12 lined up from left to right. Contrary to popular belief, Rene Descartes's original
La Géométrie ''La Géométrie'' was published in 1637 as an appendix to ''Discours de la méthode'' (''Discourse on the Method''), written by René Descartes. In the ''Discourse'', he presents his method for obtaining clarity on any subject. ''La Géométrie ...
does not feature a number line, defined as we use it today, though it does use a coordinate system. In particular, Descartes's work does not contain specific numbers mapped onto lines, only abstract quantities.Núñez, Rafael (2017). ''How Much Mathematics Is "Hardwired", If Any at All'' Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98

# Drawing the number line

A number line is usually represented as being horizontal, but in a
Cartesian coordinate plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
the vertical axis (y-axis) is also a number line.Introduction to the x,y-plane
"Purplemath" Retrieved 2015-11-13
According to one convention,
positive number In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
s always lie on the right side of zero,
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed m ...
s always lie on the left side of zero, and arrowheads on both ends of the line are meant to suggest that the line continues indefinitely in the positive and negative directions. Another convention uses only one arrowhead which indicates the direction in which numbers grow. The line continues indefinitely in the positive and negative directions according to the rules of geometry which define a line without endpoints as an ''infinite line'', a line with one endpoint as a ''ray'', and a line with two endpoints as a ''line segment''.

# Comparing numbers

If a particular number is farther to the right on the number line than is another number, then the first number is greater than the second (equivalently, the second is less than the first). The distance between them is the magnitude of their difference—that is, it measures the first number minus the second one, or equivalently the absolute value of the second number minus the first one. Taking this difference is the process of
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
. Thus, for example, the length of a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
between 0 and some other number represents the magnitude of the latter number. Two numbers can be added by "picking up" the length from 0 to one of the numbers, and putting it down again with the end that was 0 placed on top of the other number. Two numbers can be multiplied as in this example: To multiply 5 × 3, note that this is the same as 5 + 5 + 5, so pick up the length from 0 to 5 and place it to the right of 5, and then pick up that length again and place it to the right of the previous result. This gives a result that is 3 combined lengths of 5 each; since the process ends at 15, we find that 5 × 3 = 15.
Division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication * Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
can be performed as in the following example: To divide 6 by 2—that is, to find out how many times 2 goes into 6—note that the length from 0 to 2 lies at the beginning of the length from 0 to 6; pick up the former length and put it down again to the right of its original position, with the end formerly at 0 now placed at 2, and then move the length to the right of its latest position again. This puts the right end of the length 2 at the right end of the length from 0 to 6. Since three lengths of 2 filled the length 6, 2 goes into 6 three times (that is, 6 ÷ 2 = 3). File:Number line with x smaller than y.svg, The ordering on the number line: Greater elements are in direction of the arrow. File:Number line with addition of -2 and 3.svg, The difference 3-2=3+(-2) on the real number line. File:Number line with addition of 1 and 2.svg, The addition 1+2 on the real number line File:Absolute difference.svg, The absolute difference. File:Number line multiplication 2 with 1,5.svg, The multiplication 2 times 1.5 File:Number line division 3 with 2.svg, The division 3÷2 on the real number line

# Portions of the number line

The section of the number line between two numbers is called an interval. If the section includes both numbers it is said to be a closed interval, while if it excludes both numbers it is called an open interval. If it includes one of the numbers but not the other one, it is called a half-open interval. All the points extending forever in one direction from a particular point are together known as a
ray Ray may refer to: Fish * Ray (fish), any cartilaginous fish of the superorder Batoidea * Ray (fish fin anatomy), a bony or horny spine on a fin Science and mathematics * Ray (geometry), half of a line proceeding from an initial point * Ray (gr ...
. If the ray includes the particular point, it is a closed ray; otherwise it is an open ray.

# Extensions of the concept

## Logarithmic scale

On the number line, the distance between two points is the unit length if and only if the difference of the represented numbers equals 1. Other choices are possible. One of the most common choices is the ''logarithmic scale'', which is a representation of the ''positive'' numbers on a line, such that the distance of two points is the unit length, if the ratio of the represented numbers has a fixed value, typically 10. In such a logarithmic scale, the origin represents 1; one inch to the right, one has 10, one inch to the right of 10 one has , then , then , etc. Similarly, one inch to the left of 1, one has , then , etc. This approach is useful, when one wants to represent, on the same figure, values with very different
order of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
. For example, one requires a logarithmic scale for representing simultaneously the size of the different bodies that exist in the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. A ...
, typically, a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
, an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no k ...
, an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, ga ...
, a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
, a
human Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture ...
, the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface ...
, the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, a
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Syste ...
, and the visible Universe. Logarithmic scales are used in
slide rule The slide rule is a mechanical analog computer which is used primarily for multiplication and division, and for functions such as exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which i ...
s for multiplying or dividing numbers by adding or subtracting lengths on logarithmic scales.

## Combining number lines

A line drawn through the origin at right angles to the real number line can be used to represent the
imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
s. This line, called imaginary line, extends the number line to a complex number plane, with points representing
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s. Alternatively, one real number line can be drawn horizontally to denote possible values of one real number, commonly called ''x'', and another real number line can be drawn vertically to denote possible values of another real number, commonly called ''y''. Together these lines form what is known as a
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
, and any point in the plane represents the value of a pair of real numbers. Further, the Cartesian coordinate system can itself be extended by visualizing a third number line "coming out of the screen (or page)", measuring a third variable called ''z''. Positive numbers are closer to the viewer's eyes than the screen is, while negative numbers are "behind the screen"; larger numbers are farther from the screen. Then any point in the three-dimensional space that we live in represents the values of a trio of real numbers.

## As a linear continuum

The real line is a linear continuum under the standard ordering. Specifically, the real line is linearly ordered by , and this ordering is
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
and has the
least-upper-bound property In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if eve ...
. In addition to the above properties, the real line has no
maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ra ...
or minimum element. It also has a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
, namely the set of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ratio ...
s. It is a theorem that any linear continuum with a countable dense subset and no maximum or minimum element is order-isomorphic to the real line. The real line also satisfies the countable chain condition: every collection of mutually disjoint, nonempty open intervals in is countable. In
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, the famous Suslin problem asks whether every linear continuum satisfying the countable chain condition that has no maximum or minimum element is necessarily order-isomorphic to . This statement has been shown to be
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independe ...
of the standard axiomatic system of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
known as ZFC.

## As a metric space

The real line forms a
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
, with the distance function given by absolute difference: : $d\left(x, y\right) = , x - y, .$ The
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
is clearly the 1-dimensional
Euclidean metric In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore o ...
. Since the -dimensional Euclidean metric can be represented in matrix form as the -by- identity matrix, the metric on the real line is simply the 1-by-1 identity matrix, i.e. 1. If and , then the -
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used ...
in centered at is simply the open interval . This real line has several important properties as a metric space: * The real line is a
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
, in the sense that any
Cauchy sequence In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
of points converges. * The real line is path-connected and is one of the simplest examples of a geodesic metric space. * The
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of ...
of the real line is equal to one.

## As a topological space

The real line carries a standard
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, which can be introduced in two different, equivalent ways. First, since the real numbers are
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive ...
, they carry an
order topology In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, t ...
. Second, the real numbers inherit a metric topology from the metric defined above. The order topology and metric topology on are the same. As a topological space, the real line is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorph ...
to the open interval . The real line is trivially a topological manifold of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
. Up to homeomorphism, it is one of only two different connected 1-manifolds without
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film * Boundary (cricket), the edge of the pl ...
, the other being the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
. It also has a standard differentiable structure on it, making it a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts ( atlas). One ...
. (Up to
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
, there is only one differentiable structure that the topological space supports.) The real line is a
locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
and a
paracompact space In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is norma ...
, as well as second-countable and normal. It is also path-connected, and is therefore
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
as well, though it can be disconnected by removing any one point. The real line is also
contractible In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within th ...
, and as such all of its homotopy groups and
reduced homology In mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise sta ...
groups are zero. As a locally compact space, the real line can be compactified in several different ways. The
one-point compactification In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Al ...
of is a circle (namely, the real projective line), and the extra point can be thought of as an unsigned infinity. Alternatively, the real line has two
ends End, END, Ending, or variation, may refer to: End *In mathematics: **End (category theory) ** End (topology) ** End (graph theory) ** End (group theory) (a subcase of the previous) ** End (endomorphism) *In sports and games ** End (gridiron footb ...
, and the resulting end compactification is the extended real line . There is also the Stone–Čech compactification of the real line, which involves adding an infinite number of additional points. In some contexts, it is helpful to place other topologies on the set of real numbers, such as the
lower limit topology In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set \mathbb of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of inte ...
or the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is ...
. For the real numbers, the latter is the same as the finite complement topology.

## As a vector space

The real line is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ca ...
over the field of real numbers (that is, over itself) of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
. It has the usual multiplication as an
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
, making it a
Euclidean vector space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
. The
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
defined by this inner product is simply the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), a ...
.

## As a measure space

The real line carries a canonical measure, namely the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
. This measure can be defined as the completion of a Borel measure defined on , where the measure of any interval is the length of the interval. Lebesgue measure on the real line is one of the simplest examples of a
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, thou ...
on a locally compact group.

# In real algebras

The real line is a one-dimensional subspace of a real algebra ''A'' where R ⊂ ''A''. For example, in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
''z'' = ''x'' + i''y'', the subspace is a real line. Similarly, the algebra of
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quater ...
s :''q'' = ''w'' + ''x'' i + ''y'' j + ''z'' k has a real line in the subspace . When the real algebra is a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a mor ...
$A = R \oplus V,$ then a conjugation on ''A'' is introduced by the mapping $v \mapsto -v$ of subspace ''V''. In this way the real line consists of the fixed points of the conjugation.

* Cantor–Dedekind axiom * Imaginary line (mathematics) *
Line (geometry) In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segmen ...
*
Projectively extended real line In real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, \mathbb, by a point denoted . It is thus the set \mathbb\cup\ with the standa ...
* Real projective line *
Chronology Chronology (from Latin ''chronologia'', from Ancient Greek , ''chrónos'', "time"; and , ''-logia'') is the science of arranging events in their order of occurrence in time. Consider, for example, the use of a timeline or sequence of events. It ...
*
Complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
*
Cuisenaire rods Cuisenaire rods are mathematics learning aids for students that provide an interactive, hands-on way to explore mathematics and learn mathematical concepts, such as the four basic arithmetical operations, working with fractions and finding divis ...
*
Extended real number line In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra on ...
* Hyperreal number line *
Number form :''This article refers to the neurological phenomenon. For Unicode numbers, see Number Forms.'' A number form is a mental map of numbers, which automatically and involuntarily appears whenever someone who experiences number-forms thinks of ...
(neurological phenomenon) * The construction of a decimal number