In

classical logicClassical logic (or standard logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy, the type of philosophy most often found in the English-speaking world.
Chara ...

, intuitionistic logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of ...

and similar logical systems, the principle of explosion (, 'from falsehood, anything ollows; or ), or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction
In traditional logicIn philosophy
Philosophy (from , ) is the study of general and fundamental questions, such as those about reason, Metaphysics, existence, Epistemology, knowledge, Ethics, values, Philosophy of mind, mind, and Philo ...

. That is, once a contradiction has been asserted, any proposition
In logic and linguistics, a proposition is the meaning of a declarative sentence (linguistics), sentence. In philosophy, "Meaning (philosophy), meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same mea ...

(including their ) can be inferred from it; this is known as deductive explosion.
The proof of this principle was first given by 12th-century French philosopher William of SoissonsWilliam of Soissons was a French logician who lived in Paris in the 12th century. He belonged to a school of logicians, called the Parvipontians.Graham Priest, 'What's so bad about contradictions?' in Priest, Beall and Armour-Garb, ''The Law of Non-C ...

. Graham Priest, Priest, Graham. 2011. "What's so bad about contradictions?" In ''The Law of Non-Contradicton'', edited by Priest, Beal, and Armour-Garb. Oxford: Clarendon Press. p. 25. Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal system, formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the modern Zermelo–Fraenkel set theory.
As a demonstration of the principle, consider two contradictory statements—"All lemons are yellow" and "Not all lemons are yellow"—and suppose that both are true. If that is the case, anything can be proven, e.g., the assertion that "unicorns exist", by using the following argument:
# We know that "Not all lemons are yellow", as it has been assumed to be true.
# We know that "All lemons are yellow", as it has been assumed to be true.
# Therefore, the two-part statement "All lemons are yellow ''or'' unicorns exist" must also be true, since the first part "All lemons are yellow" of the two-part statement is true (as this has been assumed).
# However, since we know that "Not all lemons are yellow" (as this has been assumed), the first part is false, and hence the second part must be true to ensure the two-part statement to be true, i.e., unicorns exist.
In a different solution to these problems, a few mathematicians have devised alternate theories of logic (mathematics), logic called paraconsistent logic, ''paraconsistent logics'', which eliminate the principle of explosion. These allow some contradictory statements to be proven without affecting other proofs.
Symbolic representation

In symbolic logic, the principle of explosion can be expressed schematically in the following way:$P,\; \backslash lnot\; P\; \backslash vdash\; Q$ For any statements ''P'' and ''Q'', if ''P'' and not-''P'' are both true, then it logically follows that ''Q'' is true.

Proof

Below is a formal proof of the principle using symbolic logic This is just the symbolic version of the informal argument given in the introduction, with $P$ standing for "all lemons are yellow" and $Q$ standing for "Unicorns exist". We start out by assuming that (1) all lemons are yellow and that (2) not all lemons are yellow. From the proposition that all lemons are yellow, we infer that (3) either all lemons are yellow or unicorns exist. But then from this and the fact that not all lemons are yellow, we infer that (4) unicorns exist by disjunctive syllogism.Semantic argument

An alternate argument for the principle stems from model theory. A sentence $P$ is a ''semantic consequence'' of a set of sentences $\backslash Gamma$ only if every model of $\backslash Gamma$ is a model of $P$. However, there is no model of the contradictory set $(P\; \backslash wedge\; \backslash lnot\; P)$. A fortiori, there is no model of $(P\; \backslash wedge\; \backslash lnot\; P)$ that is not a model of $Q$. Thus, vacuously, every model of $(P\; \backslash wedge\; \backslash lnot\; P)$ is a model of $Q$. Thus $Q$ is a semantic consequence of $(P\; \backslash wedge\; \backslash lnot\; P)$.Paraconsistent logic

Paraconsistent logics have been developed that allow for sub-contrary forming operators. Formal semantics (logic), Model-theoretic paraconsistent logicians often deny the assumption that there can be no model of $\backslash $ and devise semantical systems in which there are such models. Alternatively, they reject the idea that propositions can be classified as true or false. Proof-theoretic semantics, Proof-theoretic paraconsistent logics usually deny the validity of one of the steps necessary for deriving an explosion, typically including disjunctive syllogism, disjunction introduction, and ''reductio ad absurdum''.Usage

The metamathematics, metamathematical value of the principle of explosion is that for any logical system where this principle holds, any derived mathematical theory, theory which proves false (logic), ⊥ (or an equivalent form, $\backslash phi\; \backslash land\; \backslash lnot\; \backslash phi$) is worthless because ''all'' its statement (logic), statements would become theorems, making it impossible to distinguish truth from falsehood. That is to say, the principle of explosion is an argument for the law of non-contradiction in classical logic, because without it all truth statements become meaningless. Reduction in proof strength of logics without ex falso are discussed in minimal logic.See also

* Consequentia mirabilis – Clavius' Law * Dialetheism – belief in the existence of true contradictions * Law of excluded middle – every proposition is true or false * Law of noncontradiction – no proposition can be both true and not true * Paraconsistent logic – a family of logics used to address contradictions * Paradox of entailment – a seeming paradox derived from the principle of explosion * Reductio ad absurdum – concluding that a proposition is false because it produces a contradiction * Trivialism – the belief that all statements of the form "P and not-P" are trueReferences

{{Classical logic Theorems in propositional logic Classical logic Principles