lepton
   HOME

TheInfoList



OR:

In
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, a lepton is an
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
of half-integer spin ( spin ) that does not undergo
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
s. Two main classes of leptons exist: charged leptons (also known as the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
-like leptons or muons), including the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
,
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
, and tauon, and neutral leptons, better known as
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s. Charged leptons can combine with other particles to form various
composite particle This is a list of known and hypothesized microscopic particles in particle physics, condensed matter physics and cosmology. Standard Model elementary particles Elementary particles are particles with no measurable internal structure; that is, ...
s such as
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s and
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two part ...
, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
. There are six types of leptons, known as '' flavours'', grouped in three '' generations''. The first-generation leptons, also called ''electronic leptons'', comprise the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
() and the
electron neutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfga ...
(); the second are the ''muonic leptons'', comprising the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
() and the
muon neutrino The muon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwa ...
(); and the third are the ''tauonic leptons'', comprising the
tau Tau (; uppercase Τ, lowercase τ or \boldsymbol\tau; ) is the nineteenth letter of the Greek alphabet, representing the voiceless alveolar plosive, voiceless dental or alveolar plosive . In the system of Greek numerals, it has a value of 300 ...
() and the tau neutrino (). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of
particle decay In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the ''final state'') must each be less massive than the original ...
: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, whereas muons and taus can only be produced in high-energy collisions (such as those involving
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s and those carried out in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s). Leptons have various intrinsic properties, including
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
, spin, and
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
. Unlike
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s, however, leptons are not subject to the
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
, but they are subject to the other three
fundamental interaction In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: * gravity * electromagnetism * weak int ...
s:
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and to
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, of which the latter is proportional to charge, and is thus zero for the electrically neutral neutrinos. For every lepton flavor, there is a corresponding type of
antiparticle In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
, known as an antilepton, that differs from the lepton only in that some of its properties have equal magnitude but opposite sign. According to certain theories, neutrinos may be their own antiparticle. It is not currently known whether this is the case. The first charged lepton, the electron, was theorized in the mid-19th century by several scientists and was discovered in 1897 by J. J. Thomson. The next lepton to be observed was the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
, discovered by Carl D. Anderson in 1936, which was classified as a
meson In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
at the time. After investigation, it was realized that the muon did not have the expected properties of a meson, but rather behaved like an electron, only with higher mass. It took until 1947 for the concept of "leptons" as a family of particles to be proposed. The first neutrino, the electron neutrino, was proposed by
Wolfgang Pauli Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
in 1930 to explain certain characteristics of
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. It was first observed in the Cowan–Reines neutrino experiment conducted by Clyde Cowan and Frederick Reines in 1956. The muon neutrino was discovered in 1962 by
Leon M. Lederman Leon Max Lederman (July 15, 1922 – October 3, 2018) was an American experimental physicist who received the Nobel Prize in Physics in 1988, along with Melvin Schwartz and Jack Steinberger, for research on neutrinos. He also received the Wolf Pr ...
, Melvin Schwartz, and Jack Steinberger, and the tau discovered between 1974 and 1977 by Martin Lewis Perl and his colleagues from the
Stanford Linear Accelerator Center SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a Federally funded research and development centers, federally funded research and development center in Menlo Park, California, Menlo Park, Ca ...
and
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a Federally funded research and development centers, federally funded research and development center in the Berkeley Hills, hills of Berkeley, California, United States. Established i ...
. The tau neutrino remained elusive until July 2000, when the DONUT collaboration from
Fermilab Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy United States Department of Energy National Labs, national laboratory specializing in high-energy particle phys ...
announced its discovery. Leptons are an important part of the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
. Electrons are one of the components of
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, alongside
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. Exotic atoms with muons and taus instead of electrons can also be synthesized, as well as lepton–antilepton particles such as
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two part ...
.


Etymology

The name ''lepton'' comes from the Greek ''leptós'', "fine, small, thin" ( neuter nominative/accusative singular form: λεπτόν ''leptón''); the earliest attested form of the word is the
Mycenaean Greek Mycenaean Greek is the earliest attested form of the Greek language. It was spoken on the Greek mainland and Crete in Mycenaean Greece (16th to 12th centuries BC). The language is preserved in inscriptions in Linear B, a script first atteste ...
, ''re-po-to'', written in
Linear B Linear B is a syllabary, syllabic script that was used for writing in Mycenaean Greek, the earliest Attested language, attested form of the Greek language. The script predates the Greek alphabet by several centuries, the earliest known examp ...
syllabic script. ''Lepton'' was first used by physicist Léon Rosenfeld in 1948:
Following a suggestion of Prof. C. Møller, I adopt—as a pendant to "nucleon"—the denomination "lepton" (from λεπτός, small, thin, delicate) to denote a particle of small mass.
Rosenfeld chose the name as the common name for electrons and (then hypothesized) neutrinos. Additionally, the muon, initially classified as a meson, was reclassified as a lepton in the 1950s. The masses of those particles are small compared to nucleons—the mass of an electron ()
Particle listings—
/ref> and the mass of a muon (with a value of )
Particle listings—
/ref> are fractions of the mass of the "heavy" proton (), and the mass of a neutrino is nearly zero.
Particle listings—
/ref> However, the mass of the tau (discovered in the mid-1970s) ()
Particle listings—
/ref> is nearly twice that of the proton and times that of the electron.


History

The first lepton identified was the electron, discovered by J.J. Thomson and his team of British physicists in 1897. Then in 1930,
Wolfgang Pauli Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
postulated the
electron neutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfga ...
to preserve
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
,
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
, and
conservation of angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
in
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. Pauli theorized that an undetected particle was carrying away the difference between the
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
, and
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
of the initial and observed final particles. The electron neutrino was simply called the neutrino, as it was not yet known that neutrinos came in different flavours (or different "generations"). Nearly 40 years after the discovery of the electron, the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
was discovered by Carl D. Anderson in 1936. Due to its mass, it was initially categorized as a
meson In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
rather than a lepton. It later became clear that the muon was much more similar to the electron than to mesons, as muons do not undergo the
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
, and thus the muon was reclassified: electrons, muons, and the (electron) neutrino were grouped into a new group of particles—the leptons. In 1962,
Leon M. Lederman Leon Max Lederman (July 15, 1922 – October 3, 2018) was an American experimental physicist who received the Nobel Prize in Physics in 1988, along with Melvin Schwartz and Jack Steinberger, for research on neutrinos. He also received the Wolf Pr ...
, Melvin Schwartz, and Jack Steinberger showed that more than one type of neutrino exists by first detecting interactions of the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
neutrino, which earned them the 1988 Nobel Prize, although by then the different flavours of neutrino had already been theorized. The
tau Tau (; uppercase Τ, lowercase τ or \boldsymbol\tau; ) is the nineteenth letter of the Greek alphabet, representing the voiceless alveolar plosive, voiceless dental or alveolar plosive . In the system of Greek numerals, it has a value of 300 ...
was first detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC LBL group. Like the electron and the muon, it too was expected to have an associated neutrino. The first evidence for tau neutrinos came from the observation of "missing" energy and momentum in tau decay, analogous to the "missing" energy and momentum in beta decay leading to the discovery of the electron neutrino. The first detection of tau neutrino interactions was announced in 2000 by the DONUT collaboration at
Fermilab Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy United States Department of Energy National Labs, national laboratory specializing in high-energy particle phys ...
, making it the second-to-latest particle of the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
to have been directly observed, with
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
being discovered in 2012. Although all present data is consistent with three generations of leptons, some particle physicists are searching for a fourth generation. The current lower limit on the mass of such a fourth charged lepton is , while its associated neutrino would have a mass of at least .


Properties


Spin and chirality

Leptons are spin  particles. The spin-statistics theorem thus implies that they are
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s and thus that they are subject to the Pauli exclusion principle: no two leptons of the same species can be in the same state at the same time. Furthermore, it means that a lepton can have only two possible spin states, namely up or down. A closely related property is
chirality Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable fro ...
, which in turn is closely related to a more easily visualized property called helicity. The helicity of a particle is the direction of its spin relative to its
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
; particles with spin in the same direction as their momentum are called ''right-handed'' and they are otherwise called ''left-handed''. When a particle is massless, the direction of its momentum relative to its spin is the same in every reference frame, whereas for massive particles it is possible to 'overtake' the particle by choosing a faster-moving reference frame; in the faster frame, the helicity is reversed. Chirality is a technical property, defined through transformation behaviour under the Poincaré group, that does not change with reference frame. It is contrived to agree with helicity for massless particles, and is still well defined for particles with mass. In many quantum field theories, such as
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
and
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, left- and right-handed fermions are identical. However, the Standard Model's
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
treats left-handed and right-handed fermions differently: only left-handed fermions (and right-handed anti-fermions) participate in the weak interaction. This is an example of parity violation explicitly written into the model. In the literature, left-handed fields are often denoted by a capital L subscript (e.g. the normal electron e) and right-handed fields are denoted by a capital R subscript (e.g. a positron e). Right-handed neutrinos and left-handed anti-neutrinos have no possible interaction with other particles (see '' Sterile neutrino'') and so are not a functional part of the Standard Model, although their exclusion is not a strict requirement; they are sometimes listed in particle tables to emphasize that they would have no active role if included in the model. Even though electrically charged right-handed particles (electron, muon, or tau) do not engage in the weak interaction specifically, they can still interact electrically, and hence still participate in the combined electroweak force, although with different strengths ( W).


Electromagnetic interaction

One of the most prominent properties of leptons is their
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
, . The electric charge determines the strength of their electromagnetic interactions. It determines the strength of the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
generated by the particle (see
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
) and how strongly the particle reacts to an external electric or magnetic field (see Lorentz force). Each generation contains one lepton with and one lepton with zero electric charge. The lepton with electric charge is commonly simply referred to as a ''charged lepton'' while a neutral lepton is called a ''neutrino''. For example, the first generation consists of the electron with a negative electric charge and the electrically neutral electron neutrino . In the language of quantum field theory, the electromagnetic interaction of the charged leptons is expressed by the fact that the particles interact with the quantum of the electromagnetic field, the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
. The Feynman diagram of the electron–photon interaction is shown on the right. Because leptons possess an intrinsic rotation in the form of their spin, charged leptons generate a magnetic field. The size of their
magnetic dipole moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
is given by : \mu = g\, \frac \ , where is the mass of the lepton and is the so-called " factor" for the lepton. First-order quantum mechanical approximation predicts that the  factor is 2 for all leptons. However, higher-order quantum effects caused by loops in Feynman diagrams introduce corrections to this value. These corrections, referred to as the '' anomalous magnetic dipole moment'', are very sensitive to the details of a quantum field theory model, and thus provide the opportunity for precision tests of the Standard Model. The theoretical and measured values for the ''electron'' anomalous magnetic dipole moment are within agreement within eight significant figures. The results for the ''muon'', however, are problematic, hinting at a small, persistent discrepancy between the Standard Model and experiment.


Weak interaction

In the Standard Model, the left-handed charged lepton and the left-handed neutrino are arranged in doublet that transforms in the spinor representation () of the weak isospin SU(2) gauge symmetry. This means that these particles are eigenstates of the isospin projection with eigenvalues and respectively. In the meantime, the right-handed charged lepton transforms as a weak isospin scalar () and thus does not participate in the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, while there is no evidence that a right-handed neutrino exists at all. The
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the Mass generation, generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles ...
recombines the gauge fields of the weak isospin SU(2) and the
weak hypercharge In the Standard Model (mathematical formulation), Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently deno ...
U(1) symmetries to three massive vector bosons (, , ) mediating the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and one massless vector boson, the photon (γ), responsible for the electromagnetic interaction. The electric charge can be calculated from the isospin projection and weak hypercharge through the Gell-Mann–Nishijima formula, : To recover the observed electric charges for all particles, the left-handed weak isospin doublet must thus have , while the right-handed isospin scalar must have . The interaction of the leptons with the massive weak interaction vector bosons is shown in the figure on the right.


Mass

In the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
, each lepton starts out with no intrinsic mass. The charged leptons (i.e. the electron, muon, and tau) obtain an effective mass through interaction with the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
, but the neutrinos remain massless. For technical reasons, the masslessness of the neutrinos implies that there is no mixing of the different generations of charged leptons as there is for quarks. The zero mass of neutrino is in close agreement with current direct experimental observations of the mass. However, it is known from indirect experiments—most prominently from observed
neutrino oscillation Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
s—that neutrinos have to have a nonzero mass, probably less than . This implies the existence of physics beyond the Standard Model. The currently most favoured extension is the so-called seesaw mechanism, which would explain both why the left-handed neutrinos are so light compared to the corresponding charged leptons, and why we have not yet seen any right-handed neutrinos.


Lepton flavor quantum numbers

The members of each generation's weak isospin doublet are assigned leptonic numbers that are conserved under the Standard Model. Electrons and electron neutrinos have an ''electronic number'' of , while muons and muon neutrinos have a ''muonic number'' of , while tau particles and tau neutrinos have a ''tauonic number'' of . The antileptons have their respective generation's leptonic numbers of −1. Conservation of the leptonic numbers means that the number of leptons of the same type remains the same, when particles interact. This implies that leptons and antileptons must be created in pairs of a single generation. For example, the following processes are allowed under conservation of leptonic numbers: :    →   + , :  →   + , but none of these: :      →   + , :  →   + , :    →   + . However,
neutrino oscillation Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
s are known to violate the conservation of the individual leptonic numbers. Such a violation is considered to be smoking gun evidence for physics beyond the Standard Model. A much stronger conservation law is the conservation of the total number of leptons ( ), conserved even in the case of neutrino oscillations, but even it is still violated by a tiny amount by the
chiral anomaly In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is analogous to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have mor ...
.


Universality

The coupling of leptons to all types of gauge boson are flavour-independent: The interaction between leptons and a gauge boson measures the same for each lepton. This property is called lepton universality and has been tested in measurements of the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
and
tau Tau (; uppercase Τ, lowercase τ or \boldsymbol\tau; ) is the nineteenth letter of the Greek alphabet, representing the voiceless alveolar plosive, voiceless dental or alveolar plosive . In the system of Greek numerals, it has a value of 300 ...
lifetimes and of boson partial decay widths, particularly at the Stanford Linear Collider (SLC) and Large Electron–Positron Collider (LEP) experiments. The decay rate (\Gamma) of muons through the process is approximately given by an expression of the form (see muon decay for more details) : \Gamma \left ( \mu^- \rarr e^- + \bar +\nu_\mu \right ) \approx K_2\, G_\text^2\, m_\mu^5 ~, where is some constant, and is the Fermi coupling constant. The decay rate of tau particles through the process is given by an expression of the same form : \Gamma \left ( \tau^- \rarr e^- + \bar +\nu_\tau \right ) \approx K_3\, G_\text^2\, m_\tau^5 ~, where is some other constant. Muon–tauon universality implies that . On the other hand, electron–muon universality implies : 0.9726 \times \Gamma \left( \tau^- \rarr e^- + \bar +\nu_\tau \right) = \Gamma \left( \tau^- \rarr \mu^- + \bar +\nu_\tau \right) ~. The branching ratios for the electronic mode (17.82%) and muonic (17.39%) mode of tau decay are not equal due to the mass difference of the final state leptons. Universality also accounts for the ratio of muon and tau lifetimes. The lifetime \Tau_\ell of a lepton \ell (with \ell = "" or "") is related to the decay rate by : \Tau_\ell = \frac\,, where \; \mathcal (x \rarr y) \; denotes the branching ratios and \;\Gamma(x \rarr y) \; denotes the resonance width of the process \; x \rarr y ~, with and replaced by two different particles from "" or "" or "". The ratio of tau and muon lifetime is thus given by : \frac = \frac\, \left(\frac\right)^5 ~. Using values from the 2008 '' Review of Particle Physics'' for the branching ratios of the muon and tau yields a lifetime ratio of ~ , comparable to the measured lifetime ratio of ~ . The difference is due to and not ''actually'' being constants: They depend slightly on the mass of leptons involved. Recent tests of lepton universality in meson decays, performed by the
LHCb The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector collecting data at the Large Hadron Collider at CERN. LHCb specializes in the measurements of the parameters of CP violation in the interactions of b- and c-hadro ...
, BaBar, and Belle experiments, have shown consistent deviations from the Standard Model predictions. However the combined statistical and systematic significance is not yet high enough to claim an observation of new physics. In July 2021 results on lepton flavour universality have been published testing W decays, previous measurements by the LEP had given a slight imbalance but the new measurement by the
ATLAS An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets. Atlases have traditio ...
collaboration have twice the precision and give a ratio of R_W^=\mathcal (W\rarr \tau\nu_\tau)/\mathcal( W\rarr \mu\nu_\mu)=0.992\pm0.013, which agrees with the standard-model prediction of unity. In 2024 a preprint by the ATLAS collaboration has published a new value of R_W^=\mathcal ( W\rarr \mu\nu_\mu)/\mathcal( W\rarr e\nu_e)=0.9995\pm0.0045 the most precise ratio so far testing the lepton flavour universality.


Table of leptons

:


See also

*
Koide formula The Koide formula is an unexplained Empirical relationship, empirical equation discovered by Yoshio Koide in 1981. In its original form, it is not fully empirical but a set of guesses for a model for masses of quarks and leptons, as well as Cabibbo ...
* List of particles * Preons – hypothetical particles that were once postulated to be subcomponents of quarks and leptons


Notes


References


Bibliography

* * * * * * * * * * * * *


External links

* – The PDG compiles authoritative information on particle properties. * – a summary of leptons. {{Authority control Elementary particles 1897 in science