HOME
TheInfoList



Iron oxides are chemical compounds composed of
iron
iron
and
oxygen Oxygen is the chemical element with the chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen Group (periodic table), group in the periodic table, a highly Chemical reaction, reactive nonmetal, and an oxidizing ...
. There are sixteen known iron
oxide of rutile. Ti(IV) centers are grey; oxygen centers are red. Notice that oxygen forms three bonds to titanium and titanium forms six bonds to oxygen. An oxide () is a chemical compound that contains at least one oxygen Oxygen is the chemic ...
s and oxyhydroxides, the best known of which is rust, a form of
iron(III) oxide Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxide of rutile. Ti(IV) centers are grey; oxygen centers are red. Notice that oxygen forms three bonds to titanium and titanium forms ...
. Iron oxides and oxyhydroxides are widespread in nature and play an important role in many geological and biological processes. They are used as
iron ore Iron ores are rocks and minerals from which metal A metal (from Ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and ...
s,
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compound , CH4; is among the simplest organic compou ...
s, catalysts, and in thermite, and occur in hemoglobin. Iron oxides are inexpensive and durable pigments in paints, coatings and colored concretes. Colors commonly available are in the "earthy" end of the yellow/orange/red/brown/black range. When used as a food coloring, it has E number E172.


Oxides

* Oxide of FeII ** FeO:
iron(II) oxide Iron(II) oxide or ferrous oxide is the inorganic compound with the formula FeO. Its mineral form is known as wüstite.https://www.mindat.org/min-4316.htmlhttps://www.ima-mineralogy.org/Minlist.htm One of several iron oxides, it is a black-colored ...

iron(II) oxide
, wüstite ** FeO2: iron peroxide * Mixed oxides of FeII and FeIII ** Fe3O4:
Iron(II,III) oxide Iron(II,III) oxide is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite Magnetite is a mineral and one of the main iron ore Iron ores are rocks and minerals from which metal A metal (from Ancient Gr ...
, magnetite ** Fe4O5 ** Fe5O6 ** Fe5O7 ** Fe25O32 **Fe13O19 * Oxide of FeIII ** Fe2O3:
iron(III) oxide Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxide of rutile. Ti(IV) centers are grey; oxygen centers are red. Notice that oxygen forms three bonds to titanium and titanium forms ...
*** α-Fe2O3: iron(III) oxide#Alpha phase, alpha phase, hematite *** β-Fe2O3: iron(III) oxide#Beta phase, beta phase *** γ-Fe2O3: iron(III) oxide#Gamma phase, gamma phase, maghemite *** ε-Fe2O3: iron(III) oxide#Epsilon phase, epsilon phase


Hydroxides

* iron(II) hydroxide (Fe(OH)2) * iron(III) hydroxide (Fe(OH)3), (bernalite)


Thermal expansion


Oxide-hydroxides

* goethite (α-FeOOH), * akaganéite (β-FeOOH), * lepidocrocite (γ-FeOOH), * feroxyhyte (δ-FeOOH), * ferrihydrite (Fe5HO8.4H2O approx.), or 5Fe2O3.9H2O, better recast as \ce0.4\ce * high-pressure pyrite-structured FeOOH. Once dehydration is triggered, this phase may form FeO2Hx (0. * schwertmannite (ideally Fe8O8(OH)6(SO).\mathitH2O or \ce_\text\cdot\text\ce) * green rust (\ce_\ce_z where A is Cl or 0.5SO42−)


Microbial degradation

Several species of Dissimilatory metal-reducing bacteria, bacteria, including ''Shewanella oneidensis'', ''Geobacter sulfurreducens'' and ''Geobacter metallireducens'', metabolically utilize solid iron oxides as a terminal electron acceptor, reducing Fe(III) oxides to Fe(II) containing oxides.


Environmental effects


Methanogenesis replacement by iron oxide reduction

Under conditions favoring iron reduction, the process of iron oxide reduction can replace at least 80% of methane production occurring by methanogenesis. This phenomenon occurs in a nitrogen-containing (N2) environment with low sulfate concentrations. Methanogenesis, an Archaean driven process, is typically the predominate form of carbon mineralization in sediments at the bottom of the ocean. Methanogenesis completes the decomposition of organic matter to methane (CH4). The specific electron donor for iron oxide reduction in this situation is still under debate, but the two potential candidates include either Titanium (III) or compounds present in yeast. The predicted reactions with Titanium (III) serving as the electron donor and Phenazine, phenazine-1-carboxylate (PCA) serving as an electron shuttle is as follows: :Ti(III)-cit + CO2 + 8H+ → CH4 + 2H2O + Ti(IV) + cit                           ΔE = –240 + 300 mV :Ti(III)-cit + PCA (oxidized) → PCA (reduced) + Ti(IV) + cit                ΔE = –116 + 300 mV :PCA (reduced) + Fe(OH)3 → Fe2+ + PCA (oxidized)                         ΔE = –50 + 116 mV :* Note: cit = citrate. Titanium (III) is oxidized to Titanium (IV) while PCA is reduced. The reduced form of PCA can then reduce the iron hydroxide (Fe(OH)3).


Hydroxyl radical formation

On the other hand when airborne, iron oxides have been shown to harm the lung tissues of living organisms by the formation of hydroxyl radicals, leading to the creation of alkyl radicals. The following reactions occur when Fe2O3 and FeO, hereafter represented as Fe3+ and Fe2+ respectively, iron oxide particulates accumulate in the lungs. : + → The formation of the superoxide anion () is catalyzed by a transmembrane enzyme called NADPH oxidase. The enzyme facilitates the transport of an electron across the plasma membrane from cytosolic NADPH to extracellular oxygen (O2) to produce . Nicotinamide adenine dinucleotide phosphate, NADPH and Flavin adenine dinucleotide, FAD are bound to cytoplasmic binding sites on the enzyme. Two electrons from NADPH are transported to FAD which reduces it to FADH2. Then, one electron moves to one of two heme groups in the enzyme within the plane of the membrane. The second electron pushes the first electron to the second heme group so that it can associate with the first heme group. For the transfer to occur, the second heme must be bound to extracellular oxygen which is the acceptor of the electron. This enzyme can also be located within the membranes of intracellular organelles allowing the formation of to occur within organelles. : 2 + 2 → + O2 The formation of hydrogen peroxide () can occur spontaneously when the environment has a lower pH especially at pH 7.4. The enzyme superoxide dismutase can also catalyze this reaction. Once has been synthesized, it can diffuse through membranes to travel within and outside the cell due to its nonpolar nature. : Fe2+ + → Fe3+ + HO + : Fe3+ + H2O2 → Fe2+ + + 2H+ : H2O2 + → HO + + O2 Fe2+ is oxidized to Fe3+ when it donates an electron to H2O2, thus, reducing H2O2 and forming a hydroxyl radical (HO) in the process. H2O2 can then reduce Fe3+ to Fe2+ by donating an electron to it to create . can then be used to make more H2O2 by the process previously shown perpetuating the cycle, or it can react with H2O2 to form more hydroxyl radicals. Hydroxyl radicals have been shown to increase cellular oxidative stress and attack cell membranes as well as the cell genomes. : HO + RH → R + H2O The HO radical produced from the above reactions with iron can abstract a hydrogen atom (H) from molecules containing an R-H bond where the R is a group attached to the rest of the molecule, in this case H, at a carbon (C).


See also

*Great Oxidation Event *Iron cycle *Iron oxide nanoparticle *Limonite *List of inorganic pigments


References


External links


Information from Nano-Oxides, Inc. on Fe2O3.



Iron Oxide Pigments Statistics and Information


{{Authority control Iron compounds Iron oxide pigments Transition metal oxides