communications protocol


A communication protocol is a system of rules that allows two or more entities of a
communications system 400px, Communication system A communications system or communication system is a collection of individual telecommunications networks, transmission systems, relay stations, tributary stations, and terminal equipment usually capable of inte ...
to transmit
information Information is processed, organised and structured data. It provides context for data and enables decision making process. For example, a single customer’s sale at a restaurant is data – this becomes information when the business is able ...

via any kind of variation of a
physical quantity A physical quantity is a physical property of a material or system that can be Quantification (science), quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ''numerical value'' ...
. The protocol defines the rules,
syntax In linguistics, syntax () is the set of rules, principles, and processes that govern the structure of Sentence (linguistics), sentences (sentence structure) in a given Natural language, language, usually including word order. The term ''syntax'' ...

, semantics and
synchronization Synchronization is the coordination of events to operate a system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by ...

communication Communication (from Latin ''communicare'', meaning "to share" or "to be in relation with") is "an apparent answer to the painful divisions between self and other, private and public, and inner thought and outer world." As this definition indica ...

and possible error recovery methods. Protocols may be implemented by
hardware Hardware may refer to: Technology Computing and electronics * Computer hardware, physical parts of a computer * Digital electronics, electronics that operate on digital signals * Electronic component, device in an electronic system used to affect e ...

software Software is a collection of instructions that tell a computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern computers can perform generic sets of operatio ...

, or a combination of both. Communicating systems use well-defined formats for exchanging various messages. Each message has an exact meaning intended to elicit a response from a range of possible responses pre-determined for that particular situation. The specified behavior is typically independent of how it is to be
. Communication protocols have to be agreed upon by the parties involved. To reach an agreement, a protocol may be developed into a
technical standard A technical standard is an established norm (social), norm or requirement for a repeatable technical task which is applied to a common and repeated use of rules, conditions, guidelines or characteristics for products or related processes and product ...
. A
programming language A programming language is a formal language comprising a Instruction set architecture, set of instructions that produce various kinds of Input/output, output. Programming languages are used in computer programming to implement algorithms. Most ...

programming language
describes the same for computations, so there is a close analogy between protocols and programming languages: ''protocols are to communication what programming languages are to computations''.Comer 2000, Sect. 11.2 - The Need For Multiple Protocols, p. 177, "They (protocols) are to communication what programming languages are to computation" An alternate formulation states that ''protocols are to communication what
algorithm of an algorithm (Euclid's algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers ''a'' and ''b'' in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≥ A yields "yes" ...

s are to computation''.Comer 2000, Sect. 1.3 - Internet Services, p. 3, "Protocols are to communication what algorithms are to computation" Multiple protocols often describe different aspects of a single communication. A group of protocols designed to work together is known as a protocol suite; when implemented in software they are a
protocol stack The protocol stack or network stack is an implementation of a computer networking protocol suite or protocol family. Some of these terms are used interchangeably but strictly speaking, the ''suite'' is the definition of the communication protocols ...
. Internet communication protocols are published by the
Internet Engineering Task Force The Internet Engineering Task Force (IETF) is an open standards organization A standards organization, standards body, standards developing organization (SDO), or standards setting organization (SSO) is an organization whose primary function ...
(IETF). The
IEEE The Institute of Electrical and Electronics Engineers (IEEE) is a professional association A professional association (also called a professional body, professional organization, or professional society) seeks to advocacy, further a particul ...
(Institute of Electrical and Electronics Engineers) handles wired and wireless networking and the
International Organization for Standardization The International Organization for Standardization (ISO ) is an international standard An international standard is a technical standard A technical standard is an established norm (social), norm or requirement for a repeatable technical task ...
(ISO) handles other types. The
ITU-T The ITU Telecommunication Standardization Sector (ITU-T) coordinates standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video ...
handles telecommunication protocols and formats for the
public switched telephone network The public switched telephone network (PSTN) provides Communications infrastructure, infrastructure and services for public telecommunication. The PSTN is the aggregate of the world's circuit-switched telephone networks that are operated by nati ...
(PSTN). As the PSTN and Internet
converge Converge may refer to: * Converge (band), American hardcore punk band * Converge (Baptist denomination), American national evangelical Baptist body * Limit (mathematics) * Converge ICT, internet service provider in the Philippines See also

, the standards are also being driven towards convergence.

Communicating systems


One of the first uses of the term ''protocol'' in a data-commutation context occurs in a memorandum entitled ''A Protocol for Use in the
NPL Data Communications Network The NPL network or NPL Data Communications Network was a local area computer network A computer network is a group of computers that use a set of common communication protocols over digital signal, digital interconnections for the purpose of ...
'' written by
Roger Scantlebury Roger Anthony Scantlebury (born August 1936) is a British computer scientist who worked at the National Physical Laboratory (NPL) and later at Logica. Scantlebury participated in pioneering work to develop packet switching In telecommunications ...
and Keith Bartlett in April 1967. On the
ARPANET The Advanced Research Projects Agency Network (ARPANET) was the first wide-area packet-switching In telecommunications, packet switching is a method of grouping data that is transmitted over a digital network into '' packets''. Packets are ...
, the starting point for host-to-host communication in 1969 was the 1822 protocol, which defined the transmission of messages to an IMP. The
Network Control Program The Network Control Program (NCP) provided the middle layers of the protocol stack running on host computers of the ARPANET, the predecessor to the modern Internet The Internet (Capitalization of Internet, or internet) is the global ...
for the ARPANET was first implemented in 1970. The NCP interface allowed
application software Application software (app for short) is computing software designed to carry out a specific task other than one relating to the operation of the computer itself, typically to be used by end-users. Examples of an application Application may refer ...
to connect across the ARPANET by implementing higher-level communication protocols, an early example of the ''protocol layering'' concept."NCP – Network Control Program"
Living Internet
Networking research in the early 1970s by
Robert E. Kahn
Robert E. Kahn
Vint Cerf Vinton Gray Cerf (; born June 23, 1943) is an American Internet pioneer and is recognized as one of "List of Internet pioneers, the fathers of the Internet", sharing this title with TCP/IP co-developer Bob Kahn. He has received honorary degrees ...

Vint Cerf
led to the formulation of the
Transmission Control Program The Internet Protocol (IP) is the network layer In the seven-layer OSI model The Open Systems Interconnection model (OSI model) is a conceptual model A conceptual model is a representation of a system, made of the composition of concept Co ...
(TCP). Its specification was written by Cerf with
Yogen Dalal Instead of a single "inventor", the Internet was developed by many people over many years. The following are some Internet pioneers who contributed to its early development. These include early theoretical foundations, specifying original protocols ...
and Carl Sunshine in December 1974, still a monolithic design at this time. The International Networking Working Group agreed a connectionless datagram standard which was presented to the ITU-T, CCIT in 1975 but was not adopted by the ITU or by the ARPANET. International research, particularly the work of Rémi Després, contributed to the development of the X.25 standard, based on virtual circuits by the
ITU-T The ITU Telecommunication Standardization Sector (ITU-T) coordinates standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video ...
in 1976. Computer manufacturers developed proprietary protocols such as IBM's Systems Network Architecture (SNA), Digital Equipment Corporation's DECnet and Xerox Network Systems. TCP software was redesigned as a modular protocol stack. Originally referred to as ''IP/TCP'', it was installed on SATNET in 1982 and on the ARPANET in January 1983. The development of a complete protocol suite by 1989, as outlined in and , laid the foundation for the growth of TCP/IP as a comprehensive protocol suite as the core component of the emerging Internet."TCP/IP Internet Protocol"
Living Internet
International work on a reference model for communication standards led to the OSI model, published in 1984. For a period in the late 1980s and early 1990s, engineers, organizations and nations became Protocol Wars, polarized over the issue of which standard, the OSI model or the Internet protocol suite, would result in the best and most robust computer networks.


The information exchanged between devices through a network or other media is governed by rules and conventions that can be set out in communication protocol specifications. The nature of communication, the actual data exchanged and any State (computer science), state-dependent behaviors, is defined by these specifications. In digital computing systems, the rules can be expressed by
algorithm of an algorithm (Euclid's algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers ''a'' and ''b'' in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≥ A yields "yes" ...

s and data structures. Protocols are to communication what algorithms or programming languages are to computations. Operating systems usually contain a set of cooperating processes that manipulate shared data to communicate with each other. This communication is governed by well-understood protocols, which can be embedded in the process code itself.Ben-Ari 1982, chapter 2 - The concurrent programming abstraction, p. 18-19, states the same.Ben-Ari 1982, Section 2.7 - Summary, p. 27, summarizes the concurrent programming abstraction. In contrast, because there is no shared memory, communicating systems have to communicate with each other using a shared transmission medium. Transmission is not necessarily reliable, and individual systems may use different hardware or operating systems. To implement a networking protocol, the protocol software modules are interfaced with a framework implemented on the machine's operating system. This framework implements the networking functionality of the operating system. When protocol algorithms are expressed in a portable programming language the protocol software may be made operating system independent. The best-known frameworks are the TCP/IP model and the OSI model. At the time the Internet was developed, abstraction layering had proven to be a successful design approach for both compiler and operating system design and, given the similarities between programming languages and communication protocols, the originally monolithic networking programs were decomposed into cooperating protocols. This gave rise to the concept of layered protocols which nowadays forms the basis of protocol design.Sect. 11.10 - The Disadvantage Of Layering, p. 192, states: layering forms the basis for protocol design. Systems typically do not use a single protocol to handle a transmission. Instead they use a set of cooperating protocols, sometimes called a protocol suite.Comer 2000, Sect. 11.2 - The Need For Multiple Protocols, p. 177, states the same. Some of the best known protocol suites are TCP/IP, IPX/SPX, X.25, AX.25 and AppleTalk. The protocols can be arranged based on functionality in groups, for instance, there is a group of transport protocols. The functionalities are mapped onto the layers, each layer solving a distinct class of problems relating to, for instance: application-, transport-, internet- and network interface-functions.Comer 2000, Sect. 11.3 - The Conceptual Layers Of Protocol Software, p. 178, "Each layer takes responsibility for handling one part of the problem." To transmit a message, a protocol has to be selected from each layer. The selection of the next protocol is accomplished by extending the message with a protocol selector for each layer.


There are two types of communication protocols, based on their representation of the content being carried: text-based and binary.


A text-based protocol or plain text protocol represents its content in Human-readable medium, human-readable format, often in plain text. The immediate human readability stands in contrast to binary protocols which have inherent benefits for use in a computer environment (such as ease of mechanical parsing and Lossless compression, improved bandwidth utilization). Different network applications have different methods of encapsulating data. One method very common with Internet protocols is a text oriented representation that transmits requests and responses as lines of ASCII text, terminated by a newline character (and usually a carriage return character). Examples of protocols that use plain, human-readable text for its commands are FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), and the finger protocol. Text-based protocols are typically optimized for human parsing and interpretation, and are therefore suitable whenever human inspection of protocol contents is required, such as during debugging and during early protocol development design phases.


A binary protocol utilizes all values of a byte, as opposed to a text-based protocol which only uses values corresponding to human-readable characters in ASCII encoding. Binary protocols are intended to be read by a machine rather than a human being. Binary protocols have the advantage of terseness, which translates into speed of transmission and interpretation. Binary have been used in the normative documents describing modern standards like EbXML, HTTP/2, HTTP/3 and Enterprise Distributed Object Computing, EDOC. An interface in UML may also be considered a binary protocol.

Basic requirements

Getting the data across a network is only part of the problem for a protocol. The data received has to be evaluated in the context of the progress of the conversation, so a protocol must include rules describing the context. These kind of rules are said to express the ''syntax'' of the communication. Other rules determine whether the data is meaningful for the context in which the exchange takes place. These kind of rules are said to express the ''semantics'' of the communication. Messages are sent and received on communicating systems to establish communication. Protocols should therefore specify rules governing the transmission. In general, much of the following should be addressed: ;Data formats for data exchange :Digital message bitstrings are exchanged. The bitstrings are divided in fields and each field carries information relevant to the protocol. Conceptually the bitstring is divided into two parts called the ''header'' and the ''payload''. The actual message is carried in the payload. The header area contains the fields with relevance to the operation of the protocol. Bitstrings longer than the maximum transmission unit (MTU) are divided in pieces of appropriate size. ;Address formats for data exchange :Addresses are used to identify both the sender and the intended receiver(s). The addresses are carried in the header area of the bitstrings, allowing the receivers to determine whether the bitstrings are of interest and should be processed or should be ignored. A connection between a sender and a receiver can be identified using an address pair ''(sender address, receiver address)''. Usually, some address values have special meanings. An all-''1''s address could be taken to mean an addressing of all stations on the network, so sending to this address would result in a broadcast on the local network. The rules describing the meanings of the address value are collectively called an ''addressing scheme''. ;Address mapping :Sometimes protocols need to map addresses of one scheme on addresses of another scheme. For instance to translate a logical IP address specified by the application to an Ethernet MAC address. This is referred to as ''address mapping''. ;Routing :When systems are not directly connected, intermediary systems along the ''route'' to the intended receiver(s) need to forward messages on behalf of the sender. On the Internet, the networks are connected using routers. The interconnection of networks through routers is called ''internetworking''. ;Detection of transmission errors :Error detection is necessary on networks where data corruption is possible. In a common approach, a CRC of the data area is added to the end of packets, making it possible for the receiver to detect differences caused by corruption. The receiver rejects the packets on CRC differences and arranges somehow for retransmission. ;Acknowledgements :Acknowledgement of correct reception of packets is required for connection-oriented communication. Acknowledgments are sent from receivers back to their respective senders. ;Loss of information - timeouts and retries :Packets may be lost on the network or be delayed in transit. To cope with this, under some protocols, a sender may expect an acknowledgment of correct reception from the receiver within a certain amount of time. Thus, on Timeout (computing), timeouts, the sender may need to retransmit the information. In case of a permanently broken link, the retransmission has no effect so the number of retransmissions is limited. Exceeding the retry limit is considered an error. ;Direction of information flow :Direction needs to be addressed if transmissions can only occur in one direction at a time as on half-duplex links or from one sender at a time as on a shared medium. This is known as media access control. Arrangements have to be made to accommodate the case of Collision (telecommunications), collision or Contention (telecommunications), contention where two parties respectively simultaneously transmit or wish to transmit. ;Sequence control :If long bitstrings are divided into pieces and then sent on the network individually, the pieces may get lost or delayed or, on some types of networks, take different routes to their destination. As a result, pieces may arrive out of sequence. Retransmissions can result in duplicate pieces. By marking the pieces with sequence information at the sender, the receiver can determine what was lost or duplicated, ask for necessary retransmissions and reassemble the original message. ;Flow control :Flow control is needed when the sender transmits faster than the receiver or intermediate network equipment can process the transmissions. Flow control can be implemented by messaging from receiver to sender. ;Queueing :Communicating processes or state machines employ queues (or "buffers"), usually FIFO queues, to deal with the messages in the order sent, and may sometimes have multiple queues with different prioritization

Protocol design

Systems engineering principles have been applied to create a set of common network protocol design principles. The design of complex protocols often involves decomposition into simpler, cooperating protocols. Such a set of cooperating protocols is sometimes called a protocol family or a protocol suite, within a conceptual framework. Communicating systems operate concurrently. An important aspect of concurrent programming is the synchronization of software for receiving and transmitting messages of communication in proper sequencing. Concurrent programming has traditionally been a topic in operating systems theory texts. Formal verification seems indispensable because concurrent programs are notorious for the hidden and sophisticated bugs they contain. A mathematical approach to the study of concurrency and communication is referred to as communicating sequential processes (CSP). Concurrency can also be modeled using finite state machines, such as Mealy machine, Mealy and Moore machines. Mealy and Moore machines are in use as design tools in digital electronics systems encountered in the form of hardware used in telecommunication or electronic devices in general. The literature presents numerous analogies between computer communication and programming. In analogy, a transfer mechanism of a protocol is comparable to a central processing unit (CPU). The framework introduces rules that allow the programmer to design cooperating protocols independently of one another.


In modern protocol design, protocols are layered to form a protocol stack. Layering is a design principle that divides the protocol design task into smaller steps, each of which accomplishes a specific part, interacting with the other parts of the protocol only in a small number of well-defined ways. Layering allows the parts of a protocol to be designed and tested without a combinatorial explosion of cases, keeping each design relatively simple. The communication protocols in use on the Internet are designed to function in diverse and complex settings. Internet protocols are designed for simplicity and modularity and fit into a coarse hierarchy of functional layers defined in the Internet Protocol Suite. The first two cooperating protocols, the Transmission Control Protocol (TCP) and the Internet Protocol (IP) resulted from the decomposition of the original Transmission Control Program, a monolithic communication protocol, into this layered communication suite. The OSI model was developed internationally based on experience with networks that predated the internet as a reference model for general communication with much stricter rules of protocol interaction and rigorous layering. Typically, application software is built upon a robust data transport layer. Underlying this transport layer is a datagram delivery and routing mechanism that is typically connectionless in the Internet. Packet relaying across networks happens over another layer that involves only network link technologies, which are often specific to certain physical layer technologies, such as Ethernet. Layering provides opportunities to exchange technologies when needed, for example, protocols are often stacked in a Tunneling protocol, tunneling arrangement to accommodate the connection of dissimilar networks. For example, IP may be tunneled across an Asynchronous Transfer Mode (ATM) network.

Protocol layering

Protocol layering forms the basis of protocol design. It allows the decomposition of single, complex protocols into simpler, cooperating protocols.Comer 2000, Sect. 11.2 - The Need For Multiple Protocols, p. 177, introduces the decomposition in layers. The protocol layers each solve a distinct class of communication problems. Together, the layers make up a layering scheme or model. Computations deal with algorithms and data; Communication involves protocols and messages; So the analog of a data flow diagram is some kind of message flow diagram. To visualize protocol layering and protocol suites, a diagram of the message flows in and between two systems, A and B, is shown in figure 3. The systems, A and B, both make use of the same protocol suite. The vertical flows (and protocols) are in-system and the horizontal message flows (and protocols) are between systems. The message flows are governed by rules, and data formats specified by protocols. The blue lines mark the boundaries of the (horizontal) protocol layers.

Software layering

The software supporting protocols has a layered organization and its relationship with protocol layering is shown in figure 5. To send a message on system A, the top-layer software module interacts with the module directly below it and hands over the message to be encapsulated. The lower module fills in the header data in accordance with the protocol it implements and interacts with the bottom module which sends the message over the communications channel to the bottom module of system B. On the receiving system B the reverse happens, so ultimately the message gets delivered in its original form to the top module of system B. Program translation is divided into subproblems. As a result, the translation software is layered as well, allowing the software layers to be designed independently. The same approach can be seen in the TCP/IP layering.Comer 2000, Sect. 11.2 - The need for multiple protocols, p. 178, explains similarities protocol software and compiler, assembler, linker, loader. The modules below the application layer are generally considered part of the operating system. Passing data between these modules is much less expensive than passing data between an application program and the transport layer. The boundary between the application layer and the transport layer is called the operating system boundary.

Strict layering

Strictly adhering to a layered model, a practice known as strict layering, is not always the best approach to networking. Strict layering can have a negative impact on the performance of an implementation. While the use of protocol layering is today ubiquitous across the field of computer networking, it has been historically criticized by many researchers as abstracting the protocol stack in this way may cause a higher layer to duplicate the functionality of a lower layer, a prime example being error recovery on both a per-link basis and an end-to-end basis.

Design patterns

Commonly recurring problems in the design and implementation of communication protocols can be addressed by software design patterns.

Formal specification

Popular formal methods of describing communication syntax are Abstract Syntax Notation One (an International Organization for Standardization, ISO standard) and augmented Backus–Naur form (an IETF standard). Finite-state machine models are used to formally describe the possible interactions of the protocol. and communicating finite-state machines

Protocol development

For communication to occur, protocols have to be selected. The rules can be expressed by algorithms and data structures. Hardware and operating system independence is enhanced by expressing the algorithms in a portable programming language. Source independence of the specification provides wider interoperability. Protocol standards are commonly created by obtaining the approval or support of a standards organization, which initiates the standardization process. The members of the standards organization agree to adhere to the work result on a voluntary basis. Often the members are in control of large market-shares relevant to the protocol and in many cases, standards are enforced by law or the government because they are thought to serve an important public interest, so getting approval can be very important for the protocol.

The need for protocol standards

The need for protocol standards can be shown by looking at what happened to the bi-sync protocol (BSC) invented by IBM. BSC is an early link-level protocol used to connect two separate nodes. It was originally not intended to be used in a multinode network, but doing so revealed several deficiencies of the protocol. In the absence of standardization, manufacturers and organizations felt free to enhance the protocol, creating incompatible versions on their networks. In some cases, this was deliberately done to discourage users from using equipment from other manufacturers. There are more than 50 variants of the original bi-sync protocol. One can assume, that a standard would have prevented at least some of this from happening.Marsden 1986, Section 6.1 - Why are standards necessary?, p. 64-65, uses BSC as an example to show the need for both standard protocols and a standard framework. In some cases, protocols gain market dominance without going through a standardization process. Such protocols are referred to as ''de facto standards''. De facto standards are common in emerging markets, niche markets, or markets that are monopoly, monopolized (or oligopoly, oligopolized). They can hold a market in a very negative grip, especially when used to scare away competition. From a historical perspective, standardization should be seen as a measure to counteract the ill-effects of de facto standards. Positive exceptions exist; a de facto standard operating system like Linux does not have this negative grip on its market, because the sources are published and maintained in an open way, thus inviting competition.

Standards organizations

Some of the standards organizations of relevance for communication protocols are the
International Organization for Standardization The International Organization for Standardization (ISO ) is an international standard An international standard is a technical standard A technical standard is an established norm (social), norm or requirement for a repeatable technical task ...
(ISO), the International Telecommunication Union (ITU), the Institute of Electrical and Electronics Engineers (IEEE), and the
Internet Engineering Task Force The Internet Engineering Task Force (IETF) is an open standards organization A standards organization, standards body, standards developing organization (SDO), or standards setting organization (SSO) is an organization whose primary function ...
(IETF). The IETF maintains the protocols in use on the Internet. The IEEE controls many software and hardware protocols in the electronics industry for commercial and consumer devices. The ITU is an umbrella organization of telecommunication engineers designing the
public switched telephone network The public switched telephone network (PSTN) provides Communications infrastructure, infrastructure and services for public telecommunication. The PSTN is the aggregate of the world's circuit-switched telephone networks that are operated by nati ...
(PSTN), as well as many radio communication systems. For marine electronics the National Marine Electronics Association, NMEA standards are used. The World Wide Web Consortium (W3C) produces protocols and standards for Web technologies. International standards organizations are supposed to be more impartial than local organizations with a national or commercial self-interest to consider. Standards organizations also do research and development for standards of the future. In practice, the standards organizations mentioned, cooperate closely with each other.

The standardization process

In the ISO, the standardization process starts off with the commissioning of a sub-committee workgroup. The workgroup issues working drafts and discussion documents to interested parties (including other standards bodies) in order to provoke discussion and comments. This will generate a lot of questions, much discussion and usually some disagreement. These comments are taken into account and a ''draft proposal'' is produced by the working group. After feedback, modification, and compromise the proposal reaches the status of a ''draft international standard'', and ultimately an ''international standard''. International standards are reissued periodically to handle the deficiencies and reflect changing views on the subject.

OSI standardization

A lesson learned from
ARPANET The Advanced Research Projects Agency Network (ARPANET) was the first wide-area packet-switching In telecommunications, packet switching is a method of grouping data that is transmitted over a digital network into '' packets''. Packets are ...
, the predecessor of the Internet, was that protocols need a framework to operate. It is therefore important to develop a general-purpose, future-proof framework suitable for ''structured protocols'' (such as layered protocols) and their standardization. This would prevent protocol standards with overlapping functionality and would allow clear definition of the responsibilities of a protocol at the different levels (layers). This gave rise to the Open Systems Interconnection model (OSI model), which is used as a framework for the design of standard protocols and services conforming to the various layer specifications. In the OSI model, communicating systems are assumed to be connected by an underlying physical medium providing a basic transmission mechanism. The layers above it are numbered. Each layer provides service to the layer above it using the services of the layer immediately below it. The top layer provides services to the application process. The layers communicate with each other by means of an interface, called a ''service access point''. Corresponding layers at each system are called ''peer entities''. To communicate, two peer entities at a given layer use a protocol specific to that layer which is implemented by using services of the layer below. For each layer, there are two types of standards: protocol standards defining how peer entities at a given layer communicate, and service standards defining how a given layer communicates with the layer above it. In the original version of the OSI model, the layers and their functionality are (from highest to lowest layer): * The ''Application layer'' may provide the following services to the application processes: identification of the intended communication partners, establishment of the necessary authority to communicate, determination of availability and authentication of the partners, agreement on privacy mechanisms for the communication, agreement on responsibility for error recovery and procedures for ensuring data integrity, synchronization between cooperating application processes, identification of any constraints on syntax (e.g. character sets and data structures), determination of cost and acceptable quality of service, selection of the dialogue discipline, including required logon and logoff procedures. * The ''presentation layer'' may provide the following services to the application layer: a request for the establishment of a session, data transfer, negotiation of the syntax to be used between the application layers, any necessary syntax transformations, formatting and special purpose transformations (e.g. data compression and data encryption). * The ''session layer'' may provide the following services to the presentation layer: establishment and release of session connections, normal and expedited data exchange, a quarantine service which allows the sending presentation entity to instruct the receiving session entity not to release data to its presentation entity without permission, interaction management so presentation entities can control whose turn it is to perform certain control functions, resynchronization of a session connection, reporting of unrecoverable exceptions to the presentation entity. * The ''transport layer'' provides reliable and transparent data transfer in a cost-effective way as required by the selected quality of service. It may support the multiplexing of several transport connections on to one network connection or split one transport connection into several network connections. * The ''network layer'' does the setup, maintenance and release of network paths between transport peer entities. When relays are needed, routing and relay functions are provided by this layer. The quality of service is negotiated between network and transport entities at the time the connection is set up. This layer is also responsible for network congestion control. * The ''data link layer'' does the setup, maintenance and release of data link connections. Errors occurring in the physical layer are detected and may be corrected. Errors are reported to the network layer. The exchange of data link units (including flow control) is defined by this layer. * The ''physical layer'' describes details like the electrical characteristics of the physical connection, the transmission techniques used, and the setup, maintenance and clearing of physical connections. In contrast to the #Software layering, TCP/IP layering scheme, which assumes a connectionless network, RM/OSI assumed a connection-oriented network. Connection-oriented networks are more suitable for wide area networks and connectionless networks are more suitable for local area networks. Using connections to communicate implies some form of session and (virtual) circuits, hence the (in the TCP/IP model lacking) session layer. The constituent members of ISO were mostly concerned with wide area networks, so development of RM/OSI concentrated on connection-oriented networks and connectionless networks were only mentioned in an addendum to RM/OSI. At the time, the IETF had to cope with this and the fact that the Internet needed protocols that simply were not there. As a result, the IETF developed its own standardization process based on "rough consensus and running code". The standardization process is described b
Nowadays, the IETF has become a standards organization for the protocols in use on the Internet. RM/OSI has extended its model to include connectionless services and because of this, both TCP and IP could be developed into international standards.


Classification schemes for protocols usually focus on the domain of use and function. As an example of domain of use, connection-oriented protocols and connectionless protocols are used on connection-oriented networks and connectionless networks respectively. An example of function is a tunneling protocol, which is used to encapsulate packets in a high-level protocol so that the packets can be passed across a transport system using the high-level protocol. A #Protocol layering, ''layering scheme'' combines both function and domain of use. The dominant layering schemes are the ones proposed by the IETF and by ISO. Despite the fact that the underlying assumptions of the layering schemes are different enough to warrant distinguishing the two, it is a common practice to compare the two by relating common protocols to the layers of the two schemes.Comer 2000, Sect. 11.5.1 - The TCP/IP 5-Layer Reference Model, p. 183, states the same. The layering scheme from the IETF is called ''Internet layering'' or ''TCP/IP layering''. The layering scheme from ISO is called ''the OSI model'' or ''ISO layering''. In networking equipment configuration, a term-of-art distinction is often drawn: The term "protocol" strictly refers to the transport layer, and the term "service" refers to protocols utilizing a "protocol" for transport. In the common case of TCP and UDP, services are distinguished by port numbers. Conformance to these port numbers is voluntary, so in content inspection systems the term "service" strictly refers to port numbers, and the term "application" is often used to refer to protocols identified through inspection signatures.

See also

*Lists of network protocols




* Radia Perlman: ''Interconnections: Bridges, Routers, Switches, and Internetworking Protocols.'' 2nd Edition. Addison-Wesley 1999, . In particular Ch. 18 on "network design folklore", which is also available online at * Gerard J. Holzmann: ''Design and Validation of Computer Protocols.'' Prentice Hall, 1991, . Also available online at * In particular Ch.11 Protocol layering. Also has a RFC guide and a Glossary of Internetworking Terms and Abbreviations. * Internet Engineering Task Force abbr. IETF (1989): ''RFC1122, Requirements for Internet Hosts -- Communication Layers, R. Braden (ed.)'', Available online at Describes TCP/IP to the implementors of protocolsoftware. In particular the introduction gives an overview of the design goals of the suite. * M. Ben-Ari (1982): ''Principles of concurrent programming'' 10th Print. Prentice Hall International, . * C.A.R. Hoare (1985): ''Communicating sequential processes'' 10th Print. Prentice Hall International, . Available online via * R.D. Tennent (1981): ''Principles of programming languages'' 10th Print. Prentice Hall International, . * Brian W Marsden (1986): ''Communication network protocols'' 2nd Edition. Chartwell Bratt, . * Andrew S. Tanenbaum (1984): ''Structured computer organization'' 10th Print. Prentice Hall International, .

Further reading

* Radia Perlman, ''Interconnections: Bridges, Routers, Switches, and Internetworking Protocols (2nd Edition)''. Addison-Wesley 1999. . In particular Ch. 18 on "network design folklore". * Gerard J. Holzmann, ''Design and Validation of Computer Protocols''. Prentice Hall, 1991. . Also available online at

External links

Javvin's Protocol Dictionary

{{Authority control Communications protocols, Data transmission Network protocols, *