amino acid
   HOME

TheInfoList



OR:

Amino acids are
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon chemical bond, bonds. Due to carbon's ability to Catenation, catenate (form chains with other carbon atoms), millions of organic c ...
s that contain both amino and
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with substituent, R referring to the alkyl, alkenyl, aryl, or other group. ...
functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabo ...

protein
s. Only 22 alpha amino acids appear in the
genetic code
genetic code
. Amino acids can be classified according to the locations of the core structural functional groups, as Alpha and beta carbon, alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to Chemical polarity, polarity, ionization, and side chain group type (aliphatic, Open-chain compound, acyclic, aromatic, containing hydroxyl or
sulfur
sulfur
, etc.). In the form of proteins, amino acid ''
residues
residues
'' form the second-largest component (
water
water
being the largest) of human
muscle
muscle
s and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and
biosynthesis
biosynthesis
. It is thought that they played a key role in enabling life on Earth and its emergence. Amino acids are formally named by the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature in terms of the fictitious "neutral" structure shown in the illustration. For example, the systematic name of alanine is 2-aminopropanoic acid, based on the formula . The Commission justified this approach as follows:
The systematic names and formulas given refer to hypothetical forms in which amino groups are unprotonated and carboxyl groups are undissociated. This convention is useful to avoid various nomenclatural problems but should not be taken to imply that these structures represent an appreciable fraction of the amino-acid molecules.


History

The first few amino acids were discovered in the early 1800s. In 1806, French chemists
Louis-Nicolas Vauquelin
Louis-Nicolas Vauquelin
and Pierre Jean Robiquet isolated a compound from asparagus that was subsequently named asparagine, the first amino acid to be discovered. Cystine was discovered in 1810, although its monomer,
cysteine
cysteine
, remained undiscovered until 1884. and were discovered in 1820. The last of the 20 common amino acids to be discovered was in 1935 by William Cumming Rose, who also determined the essential amino acids and established the minimum daily requirements of all amino acids for optimal growth. The unity of the chemical category was recognized by Wurtz in 1865, but he gave no particular name to it. The first use of the term "amino acid" in the English language dates from 1898, while the German term, , was used earlier.
Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabo ...

Protein
s were found to yield amino acids after enzymatic digestion or acid
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...

hydrolysis
. In 1902, and Franz Hofmeister independently proposed that proteins are formed from many amino acids, whereby bonds are formed between the amino group of one amino acid with the carboxyl group of another, resulting in a linear structure that Fischer termed " peptide".


General structure

In the structure shown at the top of the page, R represents a side chain specific to each amino acid. The
carbon Carbon () is a chemical element with the chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—its atom making four electrons available to form covalent bond, covalent chemical bonds. It belongs to gro ...

carbon
atom next to the carboxyl group is called the α–carbon. Amino acids containing an amino group bonded directly to the α-carbon are referred to as ''α-amino acids''. These include proline and , which are secondary amines. In the past they were often called ''imino acids'', a misnomer because they do not contain an imine grouping .Retrieved 2 April 2012 The obsolete term remains frequent.


Isomerism

The common natural forms of amino acids have the structure ( in the case of proline) and functional groups attached to the same C atom, and are thus α-amino acids. With the exception of achiral glycine, natural amino acids have the L configuration, and are the only ones found in proteins during translation in the ribosome. The L and D convention for amino acid configuration refers not to the optical activity of the amino acid itself but rather to the optical activity of the isomer of glyceraldehyde from which that amino acid can, in theory, be synthesized (D-glyceraldehyde is dextrorotatory; L-glyceraldehyde is levorotatory). An alternative convention is to use the (''S'') and (''R'') designators to specify the ''absolute configuration''. Almost all of the amino acids in proteins are (''S'') at the α carbon, with being (''R'') and glycine non- chiral. Cysteine has its side chain in the same geometric location as the other amino acids, but the ''R''/''S'' terminology is reversed because has higher atomic number compared to the carboxyl oxygen which gives the side chain a higher priority by the Cahn-Ingold-Prelog sequence rules, whereas the atoms in most other side chains give them lower priority compared to the carboxyl group. D-amino acid residues are found in some proteins, but they are rare.


Side chains

Amino acids are designated as α- when the amino nitrogen atom is attached to the α-carbon, the carbon atom adjacent to the carboxylate group. In all cases below in this section the \mathrmK_\mathrm values (if any) refer to the ionization of the groups as amino acid residues in proteins. They are not \mathrmK_\mathrm values for the free amino acids (which are of little biochemical importance).


Aliphatic side-chains

Seven (of the 21 proteinogenic) amino acids have side-chains that contain only H and C. These, therefore, do not ionize. They are as follows (with three- and one-letter symbols in parentheses): * (Gly, G): * (Ala, A): * Valine (Val, V): * (Ile, I): * (Leu, L): * (Phe, F): * (Pro, P): cyclized onto the amine


Polar neutral side-chains

Two amino acids contain alcohol side chains. These do not ionize in normal conditions, though one, serine, becomes deprotonated during the catalysis by serine proteases: this is an example of severe perturbation, and is not characteristic of serine residues in general. * (Ser, S, no \mathrmK_\mathrm when not severely perturbed): * (Thr, T, no \mathrmK_\mathrm): Threonine has two chiral centers, not only the L (2''S'') chiral center at the α-carbon shared by all amino acids apart from achiral glycine, but also (3''R'') at the β-carbon. The full stereochemical specification is L-threonine (2''S'',3''R'').


Amide side-chains

Two amino acids have amide side-chains, as follows: * (Asn, N): * (Gln, Q): These side-chains do not ionize in the normal range of pH.


Sulfur-containing side-chains

Two side-chains contain sulfur atoms, of which one ionizes in the normal range (with \mathrmK_\mathrm indicated) and the other does not: *
Cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic ...

Cysteine
(Cys, C, \mathrmK_\mathrm = 8.3): *
Methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical rol ...

Methionine
(Met, M, no \mathrmK_\mathrm):


Aromatic side-chains

Three amino acids have aromatic ring structures as side-chains, as illustrated. Of these, tyrosine ionizes in the normal range; the other two do not). * (Phe, F, no \mathrmK_\mathrm): left in the illustration *
Tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard proteinogenic amino acid, amino acids that are used by cell (biology), cells to protein biosynthesis, synthesize proteins. It is a non-essential amino aci ...

Tyrosine
(Tyr, Y, \mathrmK_\mathrm = 9.6): middle in the illustration *
Tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an Alpha_and_beta_carbon , α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with ...

Tryptophan
(Trp, W, no \mathrmK_\mathrm): right in the illustration


Anionic side-chains

Two amino acids have side-chains that are anions at ordinary pH. These amino acids are often referred to as if carboxylic acids but are more correctly called carboxylates, as they are deprotonated at most relevant pH values. The anionic carboxylate groups behave as Brønsted bases in all circumstances except for enzymes like
pepsin Pepsin is an endopeptidase that breaks down protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions with ...

pepsin
that act in environments of very low pH like the mammalian stomach. *
Aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
("aspartic acid", Asp, D, \mathrmK_\mathrm = 4.1): *
Glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
("glutamic acid", Glu, E, \mathrmK_\mathrm = 4.5):


Cationic side-chains

There are three amino acids with side-chains that are cations at neutral pH (though in one, histidine, cationic and neutral forms both exist). They are commonly called ''basic amino acids'', but this term is misleading: histidine can act both as a Brønsted acid and as a Brønsted base at neutral pH, lysine acts as a Brønsted acid, and arginine has a fixed positive charge and does not ionize in neutral conditions. The names ''histidinium, lysinium'' and ''argininium'' would be more accurate names for the structures, but have essentially no currency. *
Histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an Amine, α-amino group (which is in the protonated –NH3+ form under Physiological condition, biological conditions), a carboxylic ...

Histidine
(His, H, \mathrmK_\mathrm = 6.3): Protonated and deprotonated forms in equilibrium are shown at the left of the image *
Lysine Lysine (symbol Lys or K) is an α-amino acid that is a biosynthesis, precursor to many proteins. It contains an α-amino group (which is in the protonation, protonated form under biological conditions), an α-carboxylic acid group (which is in ...

Lysine
(Lys, K, \mathrmK_\mathrm = 10.4): Shown in the middle of the image *
Arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the ...

Arginine
(Arg, R, \mathrmK_\mathrm > 12): Shown at the right of the image


β- and γ-amino acids

Amino acids with the structure , such as β-alanine, a component of and a few other peptides, are β-amino acids. Ones with the structure are γ-amino acids, and so on, where X and Y are two substituents (one of which is normally H).


Zwitterions

In aqueous solution at pH close to neutrality, amino acids exist as
zwitterion In chemistry, a zwitterion ( ; ), also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively- and negatively-charged functional groups. : With amino acids, for example, in solution a equilibrium chemistry, c ...
s, i.e. as dipolar ions with both and in charged states, so the overall structure is . At physiological pH the so-called "neutral forms" are not present to any measurable degree. Although the two charges in the zwitterion structure add up to zero it is misleading to call a species with a net charge of zero "uncharged". In strongly acidic conditions (pH below 3), the carboxylate group becomes protonated and the structure becomes an ammonio carboxylic acid, . This is relevant for enzymes like pepsin that are active in acidic environments such as the mammalian stomach and , but does not significantly apply to intracellular enzymes. In highly basic conditions (pH greater than 10, not normally seen in physiological conditions), the ammonio group is deprotonated to give . Although various definitions of acids and bases are used in chemistry, the only one that is useful for chemistry in aqueous solution is that of Brønsted: an acid is a species that can donate a proton to another species, and a base is one that can accept a proton. This criterion is used to label the groups in the above illustration. Notice that aspartate and glutamate are the principal groups that act as Brønsted bases, and the common references to these as ''acidic amino acids'' (together with the C terminal) is completely wrong and misleading. Likewise the so-called ''basic amino acids'' include one (histidine) that acts as both a Brønsted acid and a base, one (lysine) that acts primarily as a Brønsted acid, and one (arginine) that is normally irrelevant to acid-base behavior as it has a fixed positive charge. In addition, tyrosine and cysteine, which act primarily as acids at neutral pH, are usually forgotten in the usual classification.


Isoelectric point

For amino acids with uncharged side-chains the zwitterion predominates at pH values between the two p''K''a values, but coexists in equilibrium with small amounts of net negative and net positive ions. At the midpoint between the two p''K''a values, the trace amount of net negative and trace of net positive ions balance, so that average net charge of all forms present is zero. This pH is known as the
isoelectric point The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electric charge, electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). Howev ...
p''I'', so p''I'' = (p''K''a1 + p''K''a2). For amino acids with charged side chains, the p''K''a of the side chain is involved. Thus for aspartate or glutamate with negative side chains, the terminal amino group is essentially entirely in the charged form , but this positive charge needs to be balanced by the state with just one C-terminal carboxylate group is negatively charged. This occurs halfway between the two carboxylate p''K''a values: p''I'' = (p''K''a1 + p''K''a(R)), where p''K''a(R) is the side chain p''K''a. Similar considerations apply to other amino acids with ionizable side-chains, including not only glutamate (similar to aspartate), but also cysteine, histidine, lysine, tyrosine and arginine with positive side chains Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from water by adjusting the pH to the required isoelectric point.


Physicochemical properties of amino acids

The 20 canonical amino acids can be classified according to their properties. Important factors are charge, hydrophilicity or
hydrophobicity In chemistry, hydrophobicity is the physical property of a molecule that is seemingly intermolecular force, repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend t ...

hydrophobicity
, size, and functional groups. These properties influence
protein structure Protein structure is the molecular geometry, three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers specifically polypeptides formed from sequences of amino acids, the monomers of the polymer. A single ami ...

protein structure
and
protein–protein interaction Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and th ...
s. The water-soluble proteins tend to have their hydrophobic residues (, , , , and ) buried in the middle of the protein, whereas hydrophilic side chains are exposed to the aqueous solvent. (Note that in
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology a ...

biochemistry
, a residue refers to a specific
monomer In chemistry, a monomer ( ; ''wikt:mono-, mono-'', "one" + ''wikt:-mer, -mer'', "part") is a molecule that can chemical reaction, react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process ...

monomer
''within'' the
polymer A polymer (; Greek ''wikt:poly-, poly-'', "many" + ''wikt:-mer, -mer'', "part") is a Chemical substance, substance or material consisting of very large molecules called macromolecules, composed of many Repeat unit, repeating subunits. Due to t ...

polymer
ic chain of a
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic bond, glycosidic linkages. This carbohydrate c ...
, protein or
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all Organism, known forms of life. They are composed of nucleotides, which are the monomers made of three components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. ...

nucleic acid
.) The
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane protein, ''transmembrane proteins'' are IMPs, but not all IMPs are transmembrane proteins. ...
s tend to have outer rings of exposed
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly intermolecular force, repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend t ...
amino acids that anchor them in the
lipid bilayer The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cell (biology), cells. The cell membranes of almost all organis ...
. Some
peripheral membrane protein Peripheral membrane proteins, or extrinsic membrane proteins, are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the periph ...
s have a patch of hydrophobic amino acids on their surface that sticks to the membrane. In a similar fashion, proteins that have to bind to positively charged molecules have surfaces rich in negatively charged amino acids such as
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
and
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
, while proteins binding to negatively charged molecules have surfaces rich in positively charged amino acids like
lysine Lysine (symbol Lys or K) is an α-amino acid that is a biosynthesis, precursor to many proteins. It contains an α-amino group (which is in the protonation, protonated form under biological conditions), an α-carboxylic acid group (which is in ...

lysine
and
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the ...

arginine
. For example, lysine and arginine are present in large amounts in the low-complexity regions of nucleic-acid binding proteins. There are various hydrophobicity scales of amino acid residues. Some amino acids have special properties. Cysteine can form covalent disulfide bonds to other cysteine residues. forms a cycle to the polypeptide backbone, and glycine is more flexible than other amino acids. Glycine and proline are strongly present within low complexity regions of both eukaryotic and prokaryotic proteins, whereas the opposite is the case with cysteine, phenylalanine, tryptophan, methionine, valine, leucine, isoleucine, which are highly reactive, or complex, or hydrophobic. Many proteins undergo a range of
posttranslational modification Post-translational modification (PTM) is the covalent and generally enzyme, enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by r ...
s, whereby additional chemical groups are attached to the amino acid residue side chains sometimes producing lipoproteins (that are hydrophobic), or
glycoprotein Glycoproteins are proteins which contain oligosaccharide chains Covalent bond, covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a translation (genetics), cotranslational or posttranslational modifica ...
s (that are hydrophilic) allowing the protein to attach temporarily to a membrane. For example, a signaling protein can attach and then detach from a cell membrane, because it contains cysteine residues that can have the fatty acid
palmitic acid Palmitic acid (hexadecanoic acid in IUPAC nomenclature) is a fatty acid with a 16-carbon chain. It is the most common saturated fatty acid found in animals, plants and microorganisms.Gunstone, F. D., John L. Harwood, and Albert J. Dijkstra. The Li ...

palmitic acid
added to them and subsequently removed.


Table of standard amino acid abbreviations and properties

Although one-letter symbols are included in the table, IUPAC–IUBMB recommend that "Use of the one-letter symbols should be restricted to the comparison of long sequences". Two additional amino acids are in some species coded for by
codons The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into protein Proteins are large biomolecules and macromolecules ...
that are usually interpreted as
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a Genetic code, codon (nucleotide triplet within messenger RNA) that signals the termination of the translation (biology), translation process of the ...
s: In addition to the specific amino acid codes, placeholders are used in cases where
chemical A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent Chemical element, elements by physical separation m ...
or analysis of a peptide or protein cannot conclusively determine the identity of a residue. They are also used to summarise conserved protein sequence motifs. The use of single letters to indicate sets of similar residues is similar to the use of abbreviation codes for degenerate bases. Unk is sometimes used instead of Xaa, but is less standard. Ter or * (from termination) is used in notation for mutations in proteins when a stop codon occurs. It correspond to no amino acid at all. In addition, many nonstandard amino acids have a specific code. For example, several peptide drugs, such as and , are artificially synthesized and retain their
protecting group A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep synthesis, multistep organic ...
s, which have specific codes. Bortezomib is Pyz–Phe–boroLeu, and MG132 is Z–Leu–Leu–Leu–al. To aid in the analysis of protein structure, photo-reactive amino acid analogs are available. These include photoleucine (pLeu) and photomethionine (pMet).


Occurrence and functions in biochemistry

Amino acids which have the amine group attached to the (alpha-) carbon atom next to the carboxyl group have primary importance in living organisms since they participate in protein synthesis. They are known as 2-, alpha-, or α-amino acids (generic
formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the terminology, term ''formula'' in science refers to the Commensurability (philosophy o ...
in most cases, where R is an organic substituent known as a " side chain"); often the term "amino acid" is used to refer specifically to these. They include the 22 Proteinogenic amino acid, proteinogenic ("protein-building") amino acids, which combine into peptide chains ("polypeptides") to form the building blocks of a vast array of proteins. These are all L-stereoisomers ("left-handed" enantiomers), although a few D-amino acids ("right-handed") occur in bacterial envelopes, as a Neuromodulation, neuromodulator (D-serine), and in some antibiotics. Many proteinogenic and non-proteinogenic amino acids have biological functions. For example, in the human brain, glutamate (standard glutamic acid) and gamma-aminobutyric acid ("GABA", nonstandard gamma-amino acid) are, respectively, the main Neurotransmitter#Excitatory and inhibitory, excitatory and inhibitory neurotransmitters. Hydroxyproline, a major component of the connective tissue collagen, is synthesised from proline. is a biosynthetic precursor to porphyrins used in red blood cells. Carnitine is used in lipid, lipid transport. Nine proteinogenic amino acids are called "essential amino acid, essential" for humans because they cannot be produced from other chemical compound, compounds by the human body and so must be taken in as food. Others may be Essential amino acid#Essentiality in humans, conditionally essential for certain ages or medical conditions. Essential amino acids may also vary from species to species. Because of their biological significance, amino acids are important in nutrition and are commonly used in nutritional supplements, fertilizers, animal feed, feed, and food technology. Industrial uses include the production of Pharmaceutical drug, drugs, biodegradable plastics, and asymmetric catalysis, chiral catalysts.


Proteinogenic amino acids

Amino acids are the precursors to proteins. They join by condensation reactions to form short polymer chains called peptides or longer chains called either polypeptides or proteins. These chains are linear and unbranched, with each amino acid residue within the chain attached to two neighboring amino acids. In Nature, the process of making proteins encoded by DNA/RNA genetic material is called ''translation (biology), translation'' and involves the step-by-step addition of amino acids to a growing protein chain by a ribozyme that is called a ribosome. The order in which the amino acids are added is read through the from an Messenger RNA, mRNA template, which is an RNA copy of one of the organism's genes. Twenty-two amino acids are naturally incorporated into polypeptides and are called proteinogenic or natural amino acids. Of these, 20 are encoded by the universal genetic code. The remaining 2, selenocysteine and pyrrolysine, are incorporated into proteins by unique synthetic mechanisms. Selenocysteine is incorporated when the mRNA being translated includes a SECIS element, which causes the UGA codon to encode selenocysteine instead of a stop codon. Pyrrolysine is used by some methanogenic archaea in enzymes that they use to produce methane. It is coded for with the codon UAG, which is normally a stop codon in other organisms. This UAG codon is followed by a PYLIS downstream sequence. Several independent evolutionary studies have suggested that Gly, Ala, Asp, Val, Ser, Pro, Glu, Leu, Thr may belong to a group of amino acids that constituted the early genetic code, whereas Cys, Met, Tyr, Trp, His, Phe may belong to a group of amino acids that constituted later additions of the genetic code.


Standard vs nonstandard amino acids

The 20 amino acids that are encoded directly by the codons of the universal genetic code are called ''standard'' or ''canonical'' amino acids. A modified form of methionine (N-Formylmethionine, ''N''-formylmethionine) is often incorporated in place of methionine as the initial amino acid of proteins in bacteria, mitochondria and chloroplasts. Other amino acids are called ''nonstandard'' or ''non-canonical''. Most of the nonstandard amino acids are also non-proteinogenic (i.e. they cannot be incorporated into proteins during translation), but two of them are proteinogenic, as they can be incorporated translationally into proteins by exploiting information not encoded in the universal genetic code. The two nonstandard proteinogenic amino acids are selenocysteine (present in many non-eukaryotes as well as most eukaryotes, but not coded directly by DNA) and pyrrolysine (found only in some archaea and at least one bacterium). The incorporation of these nonstandard amino acids is rare. For example, 25 human proteins include selenocysteine in their primary structure, and the structurally characterized enzymes (selenoenzymes) employ selenocysteine as the catalytic moiety (chemistry), moiety in their active sites. Pyrrolysine and selenocysteine are encoded via variant codons. For example, selenocysteine is encoded by stop codon and SECIS element. N-Formylmethionine, ''N''-formylmethionine (which is often the initial amino acid of proteins in bacteria, Mitochondrion, mitochondria, and chloroplasts) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon–transfer RNA, tRNA combinations not found in nature can also be used to Expanded genetic code, "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids.


Non-proteinogenic amino acids

Aside from the 22 proteinogenic amino acids, many ''non-proteinogenic'' amino acids are known. Those either are not found in proteins (for example carnitine, Gamma-aminobutyric acid, GABA, levothyroxine) or are not produced directly and in isolation by standard cellular machinery (for example, and selenomethionine). Non-proteinogenic amino acids that are found in proteins are formed by post-translational modification, which is modification after translation during protein synthesis. These modifications are often essential for the function or regulation of a protein. For example, the carboxylation of
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
allows for better binding of calcium in biology, calcium cations, and collagen contains hydroxyproline, generated by hydroxylation of proline. Another example is the formation of hypusine in the Eukaryotic initiation factor, translation initiation factor EIF5A, through modification of a lysine residue. Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane. Some non-proteinogenic amino acids are not found in proteins. Examples include 2-aminoisobutyric acid and the neurotransmitter gamma-aminobutyric acid. Non-proteinogenic amino acids often occur as intermediates in the metabolic pathways for standard amino acids – for example, ornithine and citrulline occur in the urea cycle, part of amino acid catabolism (see below). A rare exception to the dominance of α-amino acids in biology is the β-amino acid beta alanine (3-aminopropanoic acid), which is used in plants and microorganisms in the synthesis of pantothenic acid (vitamin B5), a component of coenzyme A.


In human nutrition

When taken up into the human body from the diet, the 20 standard amino acids either are used to synthesize proteins, other biomolecules, or are oxidized to urea and carbon dioxide as a source of energy. The oxidation pathway starts with the removal of the amino group by a transaminase; the amino group is then fed into the urea cycle. The other product of transamidation is a keto acid that enters the citric acid cycle. Glucogenic amino acids can also be converted into glucose, through gluconeogenesis. Of the 20 standard amino acids, nine (Histidine, His, Isoleucine, Ile, Leucine, Leu, Lysine, Lys, Methionine, Met, Phenylalanine, Phe, Threonine, Thr, Tryptophan, Trp and Valine, Val) are called essential amino acids because the human body cannot biosynthesis, synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food. In addition, cysteine, tyrosine, and
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the ...

arginine
are considered semiessential amino acids, and taurine a semiessential aminosulfonic acid in children. The metabolic pathways that synthesize these monomers are not fully developed. The amounts required also depend on the age and health of the individual, so it is hard to make general statements about the dietary requirement for some amino acids. Dietary exposure to the nonstandard amino acid beta-Methylamino-L-alanine, BMAA has been linked to human neurodegenerative diseases, including ALS.


Non-protein functions

In humans, non-protein amino acids also have important roles as metabolic intermediates, such as in the biosynthesis of the neurotransmitter gamma-aminobutyric acid (GABA). Many amino acids are used to synthesize other molecules, for example: *
Tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an Alpha_and_beta_carbon , α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with ...

Tryptophan
is a precursor of the neurotransmitter serotonin. *
Tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard proteinogenic amino acid, amino acids that are used by cell (biology), cells to protein biosynthesis, synthesize proteins. It is a non-essential amino aci ...

Tyrosine
(and its precursor phenylalanine) are precursors of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine and various trace amines. * is a precursor of phenethylamine and tyrosine in humans. In plants, it is a precursor of various phenylpropanoids, which are important in plant metabolism. * is a precursor of porphyrins such as heme. *
Arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the ...

Arginine
is a precursor of nitric oxide. * Ornithine and S-Adenosyl methionine, ''S''-adenosylmethionine are precursors of polyamines. *
Aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
, glycine, and glutamine are precursors of nucleotides. However, not all of the functions of other abundant nonstandard amino acids are known. Some nonstandard amino acids are used as Plant defense against herbivory, defenses against herbivores in plants. For example, canavanine is an analogue of
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the ...

arginine
that is found in many legumes, and in particularly large amounts in ''Canavalia gladiata'' (sword bean). This amino acid protects the plants from predators such as insects and can cause illness in people if some types of legumes are eaten without processing. The non-protein amino acid mimosine is found in other species of legume, in particular ''Leucaena leucocephala''. This compound is an analogue of tyrosine and can poison animals that graze on these plants.


Uses in industry


Fertilizer

The chelating ability of amino acids is sometimes used in fertilizers to facilitate the delivery of minerals to plants in order to correct mineral deficiencies, such as iron chlorosis. These fertilizers are also used to prevent deficiencies from occurring and to improve the overall health of the plants.


Animal feed

Amino acids are sometimes added to Compound feed, animal feed because some of the components of these feeds, such as soybeans, have low levels of some of the essential amino acids, especially of lysine, methionine, threonine, and tryptophan. Likewise amino acids are used to chelate metal cations in order to improve the absorption of minerals from feed supplements.


Food

The food industry is a major consumer of amino acids, especially glutamic acid, which is used as a flavor enhancer, and aspartame (aspartylphenylalanine 1-methyl ester), which is used as an artificial sweetener. Amino acids are sometimes added to food by manufacturers to alleviate symptoms of mineral deficiencies, such as anemia, by improving mineral absorption and reducing negative side effects from inorganic mineral supplementation.


Pharmaceuticals and cosmetics

Similarly, some amino acids derivatives are used in pharmaceutical industry. They include 5-HTP (5-hydroxytryptophan) used for experimental treatment of depression, L-DOPA, L-DOPA (L-dihydroxyphenylalanine) for Parkinson's treatment, and eflornithine drug that inhibits ornithine decarboxylase and used in the treatment of African trypanosomiasis, sleeping sickness. Amino acids are used in the synthesis of some cosmetics.


Expanded genetic code

Since 2001, 40 non-natural amino acids have been added into protein by creating a unique codon (recoding) and a corresponding transfer-RNA:aminoacyl – tRNA-synthetase pair to encode it with diverse physicochemical and biological properties in order to be used as a tool to exploring
protein structure Protein structure is the molecular geometry, three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers specifically polypeptides formed from sequences of amino acids, the monomers of the polymer. A single ami ...

protein structure
and function or to create novel or enhanced proteins.


Nullomers

Nullomers are codons that in theory code for an amino acid, however, in nature there is a selective bias against using this codon in favor of another, for example bacteria prefer to use CGA instead of AGA to code for arginine. This creates some sequences that do not appear in the genome. This characteristic can be taken advantage of and used to create new selective cancer-fighting drugs and to prevent cross-contamination of DNA samples from crime-scene investigations.


Chemical building blocks

Amino acids are important as low-cost feedstocks. These compounds are used in chiral pool synthesis as enantiomer, enantiomerically pure building blocks. Amino acids have been investigated as precursors chiral catalysts, such as for asymmetric hydrogenation reactions, although no commercial applications exist.


Biodegradable plastics

Amino acids have been considered as components of biodegradable polymers, which have applications as environmentally friendly packaging and in medicine in drug delivery and the construction of prosthetic implants. An interesting example of such materials is polyaspartate, a water-soluble biodegradable polymer that may have applications in disposable diapers and agriculture. Due to its solubility and ability to chelate metal ions, polyaspartate is also being used as a biodegradable antiFouling, scaling agent and a corrosion inhibitor. In addition, the aromatic amino acid tyrosine has been considered as a possible replacement for phenols such as bisphenol A in the manufacture of polycarbonates.


Synthesis


Chemical synthesis

The commercial production of amino acids usually relies on mutant bacteria that overproduce individual amino acids using glucose as a carbon source. Some amino acids are produced by enzymatic conversions of synthetic intermediates. 2-Aminothiazoline-4-carboxylic acid is an intermediate in one industrial synthesis of cysteine, L-cysteine for example. Aspartic acid is produced by the addition of ammonia to fumarate using a lyase.


Biosynthesis

In plants, nitrogen is first assimilated into organic compounds in the form of
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
, formed from alpha-ketoglutarate and ammonia in the mitochondrion. For other amino acids, plants use transaminases to move the amino group from glutamate to another alpha-keto acid. For example, aspartate aminotransferase converts glutamate and oxaloacetate to alpha-ketoglutarate and aspartate. Other organisms use transaminases for amino acid synthesis, too. Nonstandard amino acids are usually formed through modifications to standard amino acids. For example, homocysteine is formed through the transsulfuration pathway or by the demethylation of methionine via the intermediate metabolite S-adenosylmethionine, ''S''-adenosylmethionine, while is made by a post translational modification of proline. Microorganisms and plants synthesize many uncommon amino acids. For example, some microbes make 2-aminoisobutyric acid and lanthionine, which is a sulfide-bridged derivative of alanine. Both of these amino acids are found in peptidic lantibiotics such as alamethicin. However, in plants, 1-aminocyclopropane-1-carboxylic acid is a small disubstituted cyclic amino acid that is an intermediate in the production of the plant hormone ethylene#Ethylene as a plant hormone, ethylene.


Primordial synthesis

The formation of amino acids and peptides are assumed to precede and perhaps induce the abiogenesis, emergence of life on earth. Amino acids can form from simple precursors under various conditions. Surface-based chemical metabolism of amino acids and very small compounds may have led to the build-up of amino acids, coenzymes and phosphate-based small carbon molecules. Amino acids and similar building blocks could have been elaborated into proto- peptides, with peptides being considered key players in the origin of life. In the famous Urey-Miller experiment, the passage of an electric arc through a mixture of methane, hydrogen, and ammonia produces a large number of amino acids. Since then, scientists have discovered a range of ways and components by which the potentially prebiotic formation and chemical evolution of peptides may have occurred, such as condensing agents, the design of self-replicating peptides and a number of non-enzymatic mechanisms by which amino acids could have emerged and elaborated into peptides. Several hypotheses invoke the Strecker synthesis whereby hydrogen cyanide, simple aldehydes, ammonia, and water produce amino acids. According to a review, amino acids, and even peptides, "turn up fairly regularly in the primordial soup, various experimental broths that have been allowed to be cooked from simple chemicals. This is because nucleotides are far more difficult to synthesize chemically than amino acids." For a chronological order, it suggests that there must have been a 'protein world' or at least a 'polypeptide world', possibly later followed by the 'RNA world' and the 'DNA world'. Codon–amino acids mappings may be the biology, biological information system at the primordial origin of life on Earth. While amino acids and consequently simple peptides must have formed under different experimentally probed geochemical scenarios, the transition from an abiotic world to the first life forms is to a large extent still unresolved.


Reactions

Amino acids undergo the reactions expected of the constituent functional groups.


Peptide bond formation

As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what creates proteins. This condensation reaction yields the newly formed peptide bond and a molecule of water. In cells, this reaction does not occur directly; instead, the amino acid is first activated by attachment to a transfer RNA molecule through an ester bond. This aminoacyl-tRNA is produced in an Adenosine triphosphate, ATP-dependent reaction carried out by an aminoacyl tRNA synthetase. This aminoacyl-tRNA is then a substrate for the ribosome, which catalyzes the attack of the amino group of the elongating protein chain on the ester bond. As a result of this mechanism, all proteins made by ribosomes are synthesized starting at their ''N''-terminus and moving toward their ''C''-terminus. However, not all peptide bonds are formed in this way. In a few cases, peptides are synthesized by specific enzymes. For example, the tripeptide glutathione is an essential part of the defenses of cells against oxidative stress. This peptide is synthesized in two steps from free amino acids. In the first step, gamma-glutamylcysteine synthetase condenses cysteine and
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
through a peptide bond formed between the side chain carboxyl of the glutamate (the gamma carbon of this side chain) and the amino group of the cysteine. This dipeptide is then condensed with glycine by glutathione synthetase to form glutathione. In chemistry, peptides are synthesized by a variety of reactions. One of the most-used in peptide synthesis, solid-phase peptide synthesis uses the aromatic oxime derivatives of amino acids as activated units. These are added in sequence onto the growing peptide chain, which is attached to a solid resin support. Libraries of peptides are used in drug discovery through high-throughput screening. The combination of functional groups allow amino acids to be effective polydentate ligands for metal–amino acid chelates. The multiple side chains of amino acids can also undergo chemical reactions.


Catabolism

Degradation of an amino acid often involves deamination by moving its amino group to alpha-ketoglutarate, forming
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that th ...
. This process involves transaminases, often the same as those used in amination during synthesis. In many vertebrates, the amino group is then removed through the urea cycle and is excreted in the form of urea. However, amino acid degradation can produce uric acid or ammonia instead. For example, serine dehydratase converts serine to pyruvate and ammonia. After removal of one or more amino groups, the remainder of the molecule can sometimes be used to synthesize new amino acids, or it can be used for energy by entering glycolysis or the citric acid cycle, as detailed in image at right.


Complexation

Amino acids are bidentate ligands, forming transition metal amino acid complexes. :


Chemical analysis

The total nitrogen content of organic matter is mainly formed by the amino groups in proteins. The Total Kjeldahl Nitrogen (TKN) is a measure of nitrogen widely used in the analysis of (waste) water, soil, food, feed and organic matter in general. As the name suggests, the Kjeldahl method is applied. More sensitive methods are available.


See also

* Amino acid dating * Beta-peptide * Degron * Erepsin * Homochirality * Hyperaminoacidemia * Leucines * Miller–Urey experiment * Nucleic acid sequence * RNA codon table


Notes


References


Further reading

* * * *


External links

* {{DEFAULTSORT:Amino Acid Amino acids, Nitrogen cycle Zwitterions