Thermodynamic properties

TheInfoList

In thermodynamics, a physical property is any property that is measurable, and whose value describes a state of a physical system. Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's state. Some constants, such as the ideal gas constant, , do not describe the state of a system, and so are not properties. On the other hand, some constants, such as (the freezing point depression constant, or cryoscopic constant), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore may be considered physical properties. "Specific" properties are expressed on a per mass basis. If the units were changed from per mass to, for example, per mole, the property would remain as it was (i.e., Intensive and extensive properties, intensive or extensive).

# Regarding work and heat

Work (thermodynamics), Work and heat are not thermodynamic properties, but rather ''process function, process quantities:'' flows of energy across a system boundary. Systems do not ''contain'' work, but can ''perform'' work, and likewise, in formal thermodynamics, systems do not ''contain'' heat, but can ''transfer'' heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called ''heat'', and the energy that flows across a boundary as a result of a temperature difference is "heat". Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.