Zero point field
   HOME

TheInfoList



OR:

In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution i ...
with the lowest possible
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
. Generally, it contains no physical particles. The word zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space". According to quantum mechanics, the vacuum state is not truly empty but instead contains fleeting electromagnetic waves and
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s that pop into and out of the quantum field. The QED vacuum of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(or QED) was the first vacuum of quantum field theory to be developed. QED originated in the 1930s, and in the late 1940s and early 1950s it was reformulated by
Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superflu ...
,
Tomonaga Tomonaga is both a masculine Japanese given name and a Japanese surname. Possible writings Tomonaga can be written using different combinations of kanji characters. Here are some examples: *友永, "friend, eternity" *友長, "friend, long/lead ...
, and Schwinger, who jointly received the Nobel prize for this work in 1965. For a historical discussion, see for example For the Nobel prize details and the Nobel lectures by these authors, see Today the
electromagnetic interaction In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
s and the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
s are unified (at very high energies only) in the theory of the
electroweak interaction In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
. The Standard Model is a generalization of the QED work to include all the known
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, a ...
s and their interactions (except gravity). Quantum chromodynamics (or QCD) is the portion of the Standard Model that deals with strong interactions, and
QCD vacuum In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
is the vacuum of quantum chromodynamics. It is the object of study in the Large Hadron Collider and the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by a ...
, and is related to the so-called vacuum structure of strong interactions.


Non-zero expectation value

If the quantum field theory can be accurately described through
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middl ...
, then the properties of the vacuum are analogous to the properties of the ground state of a quantum mechanical harmonic oscillator, or more accurately, the ground state of a
measurement problem In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key se ...
. In this case the
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
(VEV) of any field operator vanishes. For quantum field theories in which perturbation theory breaks down at low energies (for example, Quantum chromodynamics or the
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
of superconductivity) field operators may have non-vanishing
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
s called
condensate Condensate may refer to: * The liquid phase produced by the condensation of steam or any other gas * The product of a chemical condensation reaction, other than water * Natural-gas condensate, in the natural gas industry * ''Condensate'' (album) ...
s. In the Standard Model, the non-zero vacuum expectation value of the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
, arising from
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or ...
, is the mechanism by which the other fields in the theory acquire mass.


Energy

The vacuum state is associated with a
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pri ...
, and this zero-point energy (equivalent to the lowest possible energy state) has measurable effects. In the laboratory, it may be detected as the
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pr ...
. In
physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
, the energy of the cosmological vacuum appears as the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
. In fact, the energy of a cubic centimeter of empty space has been calculated figuratively to be one trillionth of an
erg The erg is a unit of energy equal to 10−7joules (100 nJ). It originated in the Centimetre–gram–second system of units (CGS). It has the symbol ''erg''. The erg is not an SI unit. Its name is derived from (), a Greek word meaning 'work' o ...
(or 0.6 eV). An outstanding requirement imposed on a potential
Theory of Everything A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
is that the energy of the quantum vacuum state must explain the physically observed cosmological constant.


Symmetry

For a relativistic field theory, the vacuum is Poincaré invariant, which follows from
Wightman axioms In mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the ear ...
but can be also proved directly without these axioms. Poincaré invariance implies that only scalar combinations of field operators have non-vanishing VEV's. The
VEV In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
may break some of the internal symmetries of the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
of the field theory. In this case the vacuum has less symmetry than the theory allows, and one says that
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or ...
has occurred. See
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other be ...
, standard model.


Non-linear permittivity

Quantum corrections to Maxwell's equations are expected to result in a tiny nonlinear electric polarization term in the vacuum, resulting in a field-dependent electrical permittivity ε deviating from the nominal value ε0 of vacuum permittivity. These theoretical developments are described, for example, in Dittrich and Gies. The theory of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
predicts that the QED vacuum should exhibit a slight
nonlinearity In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
so that in the presence of a very strong electric field, the permitivity is increased by a tiny amount with respect to ε0. Subject to ongoing experimental efforts is the effect that a strong electric field would modify the effective
permeability of free space The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum''), also known as the magnetic constant, is the magnetic permeability in a classical vacuum. It is a physical constan ...
, becoming anisotropic with a value slightly below ''μ''0 in the direction of the electric field and slightly exceeding ''μ''0 in the perpendicular direction. The quantum vacuum exposed to an electric field thereby exhibits birefringence for an electromagnetic wave travelling in a direction other than that of the electric field. The effect is similar to the Kerr effect but without matter being present.Mourou, G. A., T. Tajima, and S. V. Bulanov
''Optics in the relativistic regime''; § XI ''Nonlinear QED''
''Reviews of Modern Physics'' vol. 78 (no. 2), 309-371 (2006
pdf file
This tiny nonlinearity can be interpreted in terms of virtual
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifi ...
A characteristic electric field strength for which the nonlinearities become sizable is predicted to be enormous, about 1.32 \times 10^V/m, known as the
Schwinger limit In quantum electrodynamics (QED), the Schwinger limit is a scale above which the electromagnetic field is expected to become nonlinear. The limit was first derived in one of QED's earliest theoretical successes by Fritz Sauter in 1931 and discu ...
; the equivalent
Kerr constant The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chang ...
has been estimated, being about 1020 times smaller than the Kerr constant of water. Explanations for dichroism from particle physics, outside quantum electrodynamics, also have been proposed. Experimentally measuring such an effect is very difficult, and has not yet been successful.


Virtual particles

The presence of virtual particles can be rigorously based upon the non-commutation of the quantized electromagnetic fields. Non-commutation means that although the
average In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7 ...
values of the fields vanish in a quantum vacuum, their variances do not. The term "
vacuum fluctuation In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
s" refers to the variance of the field strength in the minimal energy state, and is described picturesquely as evidence of "virtual particles". It is sometimes attempted to provide an intuitive picture of virtual particles, or variances, based upon the Heisenberg energy-time uncertainty principle: \Delta E \Delta t \ge \frac \, , (with Δ''E'' and Δ''t'' being the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, ...
variations respectively; Δ''E'' is the accuracy in the measurement of energy and Δ''t'' is the time taken in the measurement, and is the
Reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalen ...
) arguing along the lines that the short lifetime of virtual particles allows the "borrowing" of large energies from the vacuum and thus permits particle generation for short times. Although the phenomenon of virtual particles is accepted, this interpretation of the energy-time uncertainty relation is not universal. One issue is the use of an uncertainty relation limiting measurement accuracy as though a time uncertainty Δ''t'' determines a "budget" for borrowing energy Δ''E''. Another issue is the meaning of "time" in this relation, because energy and time (unlike position and momentum , for example) do not satisfy a
canonical commutation relation In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p_ ...
(such as ). Various schemes have been advanced to construct an observable that has some kind of time interpretation, and yet does satisfy a canonical commutation relation with energy. The very many approaches to the energy-time uncertainty principle are a long and continuing subject.


Physical nature of the quantum vacuum

According to Astrid Lambrecht (2002): "When one empties out a space of all matter and lowers the temperature to absolute zero, one produces in a ''Gedankenexperiment'' hought experimentthe quantum vacuum state." According to Fowler & Guggenheim (1939/1965), the
third law of thermodynamics The third law of thermodynamics states, regarding the properties of closed systems in thermodynamic equilibrium: This constant value cannot depend on any other parameters characterizing the closed system, such as pressure or applied magnetic fiel ...
may be precisely enunciated as follows:
It is impossible by any procedure, no matter how idealized, to reduce any assembly to the absolute zero in a finite number of operations. (See also.)
Photon-photon interaction can occur only through interaction with the vacuum state of some other field, for example through the Dirac electron-positron vacuum field; this is associated with the concept of
vacuum polarization In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and curr ...
. According to Milonni (1994): "... all quantum fields have zero-point energies and vacuum fluctuations." This means that there is a component of the quantum vacuum respectively for each component field (considered in the conceptual absence of the other fields), such as the electromagnetic field, the Dirac electron-positron field, and so on. According to Milonni (1994), some of the effects attributed to the vacuum electromagnetic field can have several physical interpretations, some more conventional than others. The Casimir attraction between uncharged conductive plates is often proposed as an example of an effect of the vacuum electromagnetic field. Schwinger, DeRaad, and Milton (1978) are cited by Milonni (1994) as validly, though unconventionally, explaining the Casimir effect with a model in which "the vacuum is regarded as truly a state with all physical properties equal to zero." In this model, the observed phenomena are explained as the effects of the electron motions on the electromagnetic field, called the source field effect. Milonni writes:
The basic idea here will be that the Casimir force may be derived from the source fields alone even in completely conventional QED, ... Milonni provides detailed argument that the measurable physical effects usually attributed to the vacuum electromagnetic field cannot be explained by that field alone, but require in addition a contribution from the self-energy of the electrons, or their radiation reaction. He writes: "The radiation reaction and the vacuum fields are two aspects of the same thing when it comes to physical interpretations of various QED processes including the
Lamb shift In physics, the Lamb shift, named after Willis Lamb, is a difference in energy between two energy levels 2''S''1/2 and 2''P''1/2 (in term symbol notation) of the hydrogen atom which was not predicted by the Dirac equation, according to which th ...
,
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s, and Casimir effects."
This point of view is also stated by Jaffe (2005): "The Casimir force can be calculated without reference to vacuum fluctuations, and like all other observable effects in QED, it vanishes as the fine structure constant, , goes to zero."Jaffe, R.L. (2005). Casimir effect and the quantum vacuum, ''Phys. Rev. D'' 72: 021301(R), http://1–5.cua.mit.edu/8.422_s07/jaffe2005_casimir.pdf


Notations

The vacuum state is written as , 0\rangle or , \rangle. The
vacuum expectation value In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. ...
(see also
Expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
) of any field \phi should be written as \langle0, \phi, 0\rangle.


See also

*
Pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifi ...
*
Vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
*
Lamb shift In physics, the Lamb shift, named after Willis Lamb, is a difference in energy between two energy levels 2''S''1/2 and 2''P''1/2 (in term symbol notation) of the hydrogen atom which was not predicted by the Dirac equation, according to which th ...
*
False vacuum decay In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. This condition is known as metastable. It may last for a very long time in that state, but could eventually ...
*
Squeezed coherent state In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position x and momentum p of a particle, and the (dimension-less) elect ...
*
Quantum fluctuation In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
* Scharnhorst effect *
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
* *
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pr ...


References and notes


Further reading

* Free pdf copy o
The Structured Vacuum - thinking about nothing
by
Johann Rafelski Johann Rafelski (born 19 May 1950) is a German-American theoretical physicist. He is professor of Physics at The University of Arizona in Tucson, guest scientist at CERN ( Geneva), and has been LMU-Excellent Guest Professor at the Ludwig Maxi ...
and Berndt Muller (1985) . * M.E. Peskin and D.V. Schroeder, ''An introduction to Quantum Field Theory''. * H. Genz, '' Nothingness: The Science of Empty Space'' * * E. W. Davis, V. L. Teofilo, B. Haisch, H. E. Puthoff, L. J. Nickisch, A. Rueda and D. C. Cole(2006
Review of Experimental Concepts for Studying the Quantum Vacuum Field


External links



{{Quantum mechanics topics Quantum field theory Articles containing video clips Vacuum