Young–Helmholtz theory
   HOME

TheInfoList



OR:

The Young–Helmholtz theory (based on the work of Thomas Young and
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associat ...
in the 19th century), also known as the trichromatic theory, is a theory of trichromatic
color vision Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different wavelengths (i.e., different spectral power distributions) independently of light intensity. Color perception is a part of ...
– the manner in which the
visual system The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (th ...
gives rise to the phenomenological experience of color. In 1802, Young postulated the existence of three types of photoreceptors (now known as
cone cell Cone cells, or cones, are photoreceptor cells in the retinas of vertebrate eyes including the human eye. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cone ...
s) in the eye, with different but overlapping response to different wavelengths of visible light. Hermann von Helmholtz developed the theory further in 1850: that the three types of cone photoreceptors could be classified as short-preferring ( violet), middle-preferring (
green Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 nm. In subtractive color systems, used in painting and color printing, it is created by a combin ...
), and long-preferring ( red), according to their response to the wavelengths of light striking the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
. The relative strengths of the signals detected by the three types of cones are interpreted by the
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
as a visible color. For instance, yellow light uses different proportions of red and green, but little blue, so any hue depends on a mix of all three cones, for example, a strong red-sensitive, medium green-sensitive, and low blue-sensitive. Moreover, the intensity of colors can be changed without changing their hues, since intensity depends on the frequency of discharge to the brain, as a blue-green can be brightened but retain the same hue. The system is not perfect, as it does not distinguish yellow from a red-green mixture, but can powerfully detect subtle environmental changes. In 1857,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
used the recently developed
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
to offer a mathematical proof of the Young–Helmholtz theory. The existence of cells sensitive to three different wavelength ranges (most sensitive to yellowish green, cyanish-green, and blue – not red, green and blue) was first shown in 1956 by Gunnar Svaetichin. In 1983 it was validated in human retinas in an experiment by Dartnall, Bowmaker, and Mollon, who obtained microspectrophotopic readings of single eye cone cells. Earlier evidence for the theory had been obtained by looking at light reflected from the retinas of living humans, and absorption of light by retinal cells removed from corpses.


References

{{DEFAULTSORT:Young-Helmholtz theory Vision Hermann von Helmholtz