Yarkovsky effect
   HOME

TheInfoList



OR:

The Yarkovsky effect is a force acting on a rotating body in space caused by the anisotropic emission of
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
photons, which carry momentum. It is usually considered in relation to
meteoroid A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mi ...
s or small asteroids (about 10 cm to 10 km in diameter), as its influence is most significant for these bodies.


History of discovery

The effect was discovered by the Polish-Russian civil engineer Ivan Osipovich Yarkovsky (1844–1902), who worked in Russia on scientific problems in his spare time. Writing in a pamphlet around the year 1900, Yarkovsky noted that the daily heating of a rotating object in space would cause it to experience a force that, while tiny, could lead to large long-term effects in the orbits of small bodies, especially
meteoroid A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mi ...
s and small asteroids. Yarkovsky's insight would have been forgotten had it not been for the Estonian astronomer Ernst J. Öpik (1893–1985), who read Yarkovsky's pamphlet sometime around 1909. Decades later, Öpik, recalling the pamphlet from memory, discussed the possible importance of the Yarkovsky effect on movement of meteoroids about the Solar System.


Mechanism

The Yarkovsky effect is a consequence of the fact that change in the temperature of an object warmed by radiation (and therefore the intensity of thermal radiation from the object) lags behind changes in the incoming radiation. That is, the surface of the object takes time to become warm when first illuminated, and takes time to cool down when illumination stops. In general there are two components to the effect: * Diurnal effect: On a rotating body illuminated by the Sun (e.g. an asteroid or the Earth), the surface is warmed by solar radiation during the day, and cools at night. Due to the thermal properties of the surface, there is a lag between the absorption of radiation from the Sun, and the emission of radiation as heat, so the warmest point on a rotating body occurs around the "2 PM" site on the surface, or slightly after noon. This results in a difference between the directions of absorption and re-emission of radiation, which yields a net force along the direction of motion of the orbit. If the object is a prograde rotator, the force is in the direction of motion of the orbit, and causes the semi-major axis of the orbit to increase steadily; the object spirals away from the Sun. A retrograde rotator spirals inward. The diurnal effect is the dominant component for bodies with diameter greater than about 100 m. * Seasonal effect: This is easiest to understand for the idealised case of a non-rotating body orbiting the Sun, for which each "year" consists of exactly one "day". As it travels around its orbit, the "dusk" hemisphere which has been heated over a long preceding time period is invariably in the direction of orbital motion. The excess of thermal radiation in this direction causes a braking force that always causes spiraling inward toward the Sun. In practice, for rotating bodies, this seasonal effect increases along with the axial tilt. It dominates only if the diurnal effect is small enough. This may occur because of very rapid rotation (no time to cool off on the night side, hence an almost uniform longitudinal temperature distribution), small size (the whole body is heated throughout) or an axial tilt close to 90°. The seasonal effect is more important for smaller asteroid fragments (from a few metres up to about 100 m), provided their surfaces are not covered by an insulating
regolith Regolith () is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestr ...
layer and they do not have exceedingly slow rotations. Additionally, on very long timescales over which the spin axis of the body may be repeatedly changed due to collisions (and hence also the direction of the diurnal effect changes), the seasonal effect will also tend to dominate. In general, the effect is size-dependent, and will affect the semi-major axis of smaller asteroids, while leaving large asteroids practically unaffected. For kilometre-sized asteroids, the Yarkovsky effect is minuscule over short periods: the force on asteroid 6489 Golevka has been estimated at 0.25 newtons, for a net acceleration of 10−12 m/s2. But it is steady; over millions of years an asteroid's orbit can be perturbed enough to transport it from the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
to the inner Solar System. The mechanism is more complicated for bodies in strongly eccentric orbits.


Measurement

The effect was first measured in 1991–2003 on the asteroid 6489 Golevka. The asteroid drifted 15 km from its predicted position over twelve years (the orbit was established with great precision by a series of radar observations in 1991, 1995 and 1999 from the
Arecibo radio telescope The Arecibo Telescope was a spherical reflector radio telescope built into a natural sinkhole at the Arecibo Observatory located near Arecibo, Puerto Rico. A cable-mount steerable receiver and several radar transmitters for emitting signals we ...
). Without direct measurement, it is very hard to predict the exact result of the Yarkovsky effect on a given asteroid's orbit. This is because the magnitude of the effect depends on many variables that are hard to determine from the limited observational information that is available. These include the exact shape of the asteroid, its orientation, and its albedo. Calculations are further complicated by the effects of shadowing and thermal "reillumination", whether caused by local craters or a possible overall concave shape. The Yarkovsky effect also competes with
radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
, whose net effect may cause similar small long-term forces for bodies with albedo variations or non-spherical shapes. As an example, even for the simple case of the pure seasonal Yarkovsky effect on a spherical body in a circular orbit with 90°
obliquity In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbi ...
, semi-major axis changes could differ by as much as a factor of two between the case of a uniform albedo and the case of a strong north–south albedo asymmetry. Depending on the object's orbit and spin axis, the Yarkovsky change of the semi-major axis may be reversed simply by changing from a spherical to a non-spherical shape. Despite these difficulties, utilizing the Yarkovsky effect is one scenario under investigation to alter the course of potentially Earth-impacting near-Earth asteroids. Possible
asteroid deflection strategies Asteroid impact avoidance comprises the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted away, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs ...
include "painting" the surface of the asteroid or focusing solar radiation onto the asteroid to alter the intensity of the Yarkovsky effect and so alter the orbit of the asteroid away from a collision with Earth. The
OSIRIS-REx OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid-study and sample-return mission. The mission's primary goal is to obtain a sample of at least from 101955 Bennu, a carbona ...
mission, launched in September 2016, studies the Yarkovsky effect on asteroid Bennu. In 2020, astronomers confirmed Yarkovsky acceleration of the asteroid
99942 Apophis 99942 Apophis is a near-Earth asteroid and potentially hazardous asteroid with a diameter of that caused a brief period of concern in December 2004 when initial observations indicated a probability up to 2.7% that it would hit Earth on April&nb ...
. The findings are relevant to
asteroid impact avoidance Asteroid impact avoidance comprises the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted away, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs ...
as 99942 Apophis was thought to have a very small chance of Earth impact in 2068, and the Yarkovsky effect was a significant source of prediction uncertainty. In 2021, a multidisciplinary professional-amateur collaboration combined Gaia satellite and ground-based radar measurements with amateur stellar occultation observations to further refine 99942 Apophis's orbit and measure the Yarkovsky acceleration with high precision, to within 0.5%. With these, astronomers were able to eliminate the possibility of a collision with the Earth for at least the next 100 years.


See also

* Asteroid * Poynting–Robertson effect *
Radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
*
YORP effect Yorp or YORP may refer to one of the following: * 54509 YORP, an Earth co-orbital asteroid * Yarkovsky–O'Keefe–Radzievskii–Paddack effect, a second-order variation on the Yarkovsky effect *Yorps, friendly one-eyed Martians from the Commander ...


References


External links

*
Asteroid Nudged by Sunlight: Most Precise Measurement of Yarkovsky Effect
– ( ScienceDaily 2012-05-24) {{DEFAULTSORT:Yarkovsky Effect Orbital perturbations