Work hardening
   HOME

TheInfoList



OR:

In materials science, work hardening, also known as strain hardening, is the strengthening of a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
or
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
by
plastic deformation In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
. Work hardening may be desirable, undesirable, or inconsequential, depending on the context. This strengthening occurs because of
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to s ...
movements and dislocation generation within the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns ...
of the material. Many non-brittle metals with a reasonably high
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
as well as several polymers can be strengthened in this fashion. Alloys not amenable to
heat treatment Heat treating (or heat treatment) is a group of industrial process, industrial, thermal and metalworking, metalworking processes used to alter the physical property, physical, and sometimes chemical property, chemical, properties of a material. ...
, including low-carbon steel, are often work-hardened. Some materials cannot be work-hardened at low temperatures, such as
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts ...
, however others can be strengthened only via work hardening, such as pure copper and aluminum.


Undesirable work hardening

An example of undesirable work hardening is during machining when early passes of a cutter inadvertently work-harden the workpiece surface, causing damage to the cutter during the later passes. Certain alloys are more prone to this than others; superalloys such as
Inconel Inconel is a registered trademark of Special Metals Corporation for a family of austenitic nickel-chromium-based superalloys. Inconel alloys are oxidation-corrosion-resistant materials well suited for service in extreme environments subjected ...
require machining strategies that take it into account. For metal objects designed to flex, such as springs, specialized alloys are usually employed in order to avoid work hardening (a result of
plastic deformation In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
) and
metal fatigue In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts o ...
, with specific heat treatments required to obtain the necessary characteristics.


Intentional work hardening

An example of desirable work hardening is that which occurs in metalworking processes that intentionally induce plastic deformation to exact a shape change. These processes are known as cold working or cold forming processes. They are characterized by shaping the workpiece at a temperature below its recrystallization temperature, usually at ambient temperature.. Cold forming techniques are usually classified into four major groups: squeezing,
bending In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to ...
, drawing, and shearing. Applications include the heading of bolts and cap screws and the finishing of
cold rolled steel Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are common ...
. In cold forming, metal is formed at high speed and high pressure using tool steel or carbide dies. The cold working of the metal increases the hardness,
yield strength In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and ...
, and tensile strength.


Theory

Before work hardening, the lattice of the material exhibits a regular, nearly defect-free pattern (almost no dislocations). The defect-free lattice can be created or restored at any time by annealing. As the material is work hardened it becomes increasingly saturated with new dislocations, and more dislocations are prevented from nucleating (a resistance to dislocation-formation develops). This resistance to dislocation-formation manifests itself as a resistance to plastic deformation; hence, the observed strengthening. In metallic crystals, this is a reversible process and is usually carried out on a microscopic scale by defects called dislocations, which are created by fluctuations in local
stress fields A stress field is the distribution of internal forces in a body that balance a given set of external forces. Stress fields are widely used in fluid dynamics and materials science. Consider that one can picture the stress fields as the stress cre ...
within the material culminating in a lattice rearrangement as the dislocations propagate through the lattice. At normal temperatures the dislocations are not annihilated by annealing. Instead, the dislocations accumulate, interact with one another, and serve as
pinning points In a crystalline material, a dislocation is capable of traveling throughout the lattice when relatively small stresses are applied. This movement of dislocations results in the material plastically deforming. Pinning points in the material act ...
or obstacles that significantly impede their motion. This leads to an increase in the
yield strength In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and ...
of the material and a subsequent decrease in ductility. Such deformation increases the concentration of dislocations which may subsequently form low-angle grain boundaries surrounding sub-grains. Cold working generally results in a higher yield strength as a result of the increased number of dislocations and the Hall–Petch effect of the sub-grains, and a decrease in ductility. The effects of cold working may be reversed by annealing the material at high temperatures where recovery and recrystallization reduce the dislocation density. A material's work
hardenability The hardenability of a metal alloy is the depth to which a material is hardened after putting it through a heat treatment process. It should not be confused with hardness, which is a measure of a sample's resistance to indentation or scratching. I ...
can be predicted by analyzing a stress–strain curve, or studied in context by performing
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
tests before and after a process.


Elastic and plastic deformation

Work hardening is a consequence of plastic deformation, a permanent change in shape. This is distinct from elastic deformation, which is reversible. Most materials do not exhibit only one or the other, but rather a combination of the two. The following discussion mostly applies to metals, especially steels, which are well studied. Work hardening occurs most notably for ductile materials such as metals. Ductility is the ability of a material to undergo plastic deformations before fracture (for example, bending a steel rod until it finally breaks). The tensile test is widely used to study deformation mechanisms. This is because under compression, most materials will experience trivial (lattice mismatch) and non-trivial (buckling) events before plastic deformation or fracture occur. Hence the intermediate processes that occur to the material under uniaxial compression before the incidence of plastic deformation make the compressive test fraught with difficulties. A material generally deforms elastically under the influence of small forces; the material returns quickly to its original shape when the deforming force is removed. This phenomenon is called ''elastic deformation''. This behavior in materials is described by
Hooke's Law In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
. Materials behave elastically until the deforming force increases beyond the
elastic limit In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and w ...
, which is also known as the yield stress. At that point, the material is permanently deformed and fails to return to its original shape when the force is removed. This phenomenon is called ''plastic deformation''. For example, if one stretches a
coil spring A selection of conical coil springs The most common type of spring is the coil spring, which is made out of a long piece of metal that is wound around itself. Coil springs were in use in Roman times, evidence of this can be found in bronze Fib ...
up to a certain point, it will return to its original shape, but once it is stretched beyond the elastic limit, it will remain deformed and won't return to its original state. Elastic deformation stretches the bonds between atoms away from their equilibrium radius of separation, without applying enough energy to break the inter-atomic bonds. Plastic deformation, on the other hand, breaks inter-atomic bonds, and therefore involves the rearrangement of atoms in a solid material.


Dislocations and lattice strain fields

In materials science parlance, dislocations are defined as line defects in a material's crystal structure. The bonds surrounding the dislocation are already elastically strained by the defect compared to the bonds between the constituents of the regular crystal lattice. Therefore, these bonds break at relatively lower stresses, leading to plastic deformation. The strained bonds around a dislocation are characterized by lattice
strain Strain may refer to: Science and technology * Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes * Strain (chemistry), a chemical stress of a molecule * Strain (injury), an injury to a mu ...
fields. For example, there are compressively strained bonds directly next to an edge dislocation and tensilely strained bonds beyond the end of an edge dislocation. These form compressive strain fields and tensile strain fields, respectively. Strain fields are analogous to electric fields in certain ways. Specifically, the strain fields of dislocations obey similar laws of attraction and repulsion; in order to reduce overall strain, compressive strains are attracted to tensile strains, and vice versa. The visible (
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenomena a ...
) results of plastic deformation are the result of
microscopic The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale be ...
dislocation motion. For example, the stretching of a steel rod in a tensile tester is accommodated through dislocation motion on the atomic scale.


Increase of dislocations and work hardening

Increase in the number of dislocations is a quantification of work hardening. Plastic deformation occurs as a consequence of
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
being done on a material; energy is added to the material. In addition, the energy is almost always applied fast enough and in large enough magnitude to not only move existing dislocations, but also to ''produce'' a great number of new dislocations by jarring or working the material sufficiently enough. New dislocations are generated in proximity to a
Frank–Read source In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, dislo ...
. Yield strength is increased in a cold-worked material. Using lattice strain fields, it can be shown that an environment filled with dislocations will hinder the movement of any one dislocation. Because dislocation motion is hindered, plastic deformation cannot occur at normal
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
es. Upon application of stresses just beyond the yield strength of the non-cold-worked material, a cold-worked material will continue to deform using the only mechanism available: elastic deformation, the regular scheme of stretching or compressing of electrical bonds (without dislocation motion) continues to occur, and the
modulus of elasticity An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is ...
is unchanged. Eventually the stress is great enough to overcome the strain-field interactions and plastic deformation resumes. However,
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
of a work-hardened material is decreased.
Ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
is the extent to which a material can undergo plastic deformation, that is, it is how far a material can be plastically deformed before fracture. A cold-worked material is, in effect, a normal (brittle) material that has already been extended through part of its allowed plastic deformation. If dislocation motion and plastic deformation have been hindered enough by dislocation accumulation, and stretching of electronic bonds and elastic deformation have reached their limit, a third mode of deformation occurs: fracture.


Quantification of work hardening

The strength, \tau , of dislocation is dependent on the shear modulus, G, the magnitude of the
Burgers vector In materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as , that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice. The ve ...
, b, and the dislocation density, \rho_\perp : : \tau = \tau_0 + G \alpha b \rho_\perp^\ where \tau_0 is the intrinsic strength of the material with low dislocation density and \alpha is a correction factor specific to the material. As shown in Figure 1 and the equation above, work hardening has a half root dependency on the number of dislocations. The material exhibits high strength if there are either high levels of dislocations (greater than 1014 dislocations per m2) or no dislocations. A moderate number of dislocations (between 107 and 109 dislocations per m2) typically results in low strength.


Example

For an extreme example, in a tensile test a bar of steel is strained to just before the length at which it usually fractures. The load is released smoothly and the material relieves some of its strain by decreasing in length. The decrease in length is called the elastic recovery, and the end result is a work-hardened steel bar. The fraction of length recovered (length recovered/original length) is equal to the yield-stress divided by the modulus of elasticity. (Here we discuss true stress in order to account for the drastic decrease in diameter in this tensile test.) The length recovered after removing a load from a material just before it breaks is equal to the length recovered after removing a load just before it enters plastic deformation. The work-hardened steel bar has a large enough number of dislocations that the strain field interaction prevents all plastic deformation. Subsequent deformation requires a stress that varies linearly with the
strain Strain may refer to: Science and technology * Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes * Strain (chemistry), a chemical stress of a molecule * Strain (injury), an injury to a mu ...
observed, the slope of the graph of stress vs. strain is the modulus of elasticity, as usual. The work-hardened steel bar fractures when the applied stress exceeds the usual fracture stress and the strain exceeds usual fracture strain. This may be considered to be the elastic limit and the yield stress is now equal to the fracture toughness, which is much higher than a non-work-hardened steel yield stress. The amount of plastic deformation possible is zero, which is less than the amount of plastic deformation possible for a non-work-hardened material. Thus, the ductility of the cold-worked bar is reduced. Substantial and prolonged cavitation can also produce strain hardening.


Empirical relations

There are two common mathematical descriptions of the work hardening phenomenon. Hollomon's equation is a power law relationship between the stress and the amount of plastic strain: : \sigma = K \epsilon_p ^n \,\! where ''σ'' is the stress, ''K'' is the strength index or strength coefficient, ''εp'' is the plastic strain and ''n'' is the strain hardening exponent. Ludwik's equation is similar but includes the yield stress: : \sigma = \sigma_y + K \epsilon_p^n \,\! If a material has been subjected to prior deformation (at low temperature) then the yield stress will be increased by a factor depending on the amount of prior plastic strain ''ε0'': : \sigma = \sigma_y + K (\epsilon_0 + \epsilon_p)^n \,\! The constant K is structure dependent and is influenced by processing while n is a material property normally lying in the range 0.2–0.5. The strain hardening index can be described by: : n = \frac = \frac\frac \,\! This equation can be evaluated from the slope of a log(σ) – log(ε) plot. Rearranging allows a determination of the rate of strain hardening at a given stress and strain: : \frac = n \frac \,\!


Work hardening in specific materials


Copper

Copper was the first metal in common use for tools and containers since it is one of the few metals available in non-oxidized form, not requiring the
smelting Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a ...
of an
ore Ore is natural rock or sediment that contains one or more valuable minerals, typically containing metals, that can be mined, treated and sold at a profit.Encyclopædia Britannica. "Ore". Encyclopædia Britannica Online. Retrieved 7 Apr ...
. Copper is easily softened by heating and then cooling (it does not harden by quenching, e.g., quenching in cool water). In this annealed state it may then be hammered, stretched and otherwise formed, progressing toward the desired final shape but becoming harder and less
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
as work progresses. If work continues beyond a certain hardness the metal will tend to fracture when worked and so it may be re-annealed periodically as shaping continues. Annealing is stopped when the workpiece is near its final desired shape, and so the final product will have a desired stiffness and hardness. The technique of '' repoussé'' exploits these properties of copper, enabling the construction of durable jewelry articles and sculptures (such as the Statue of Liberty).


Gold and other precious metals

Much gold jewelry is produced by casting, with little or no cold working; which, depending on the alloy grade, may leave the metal relatively soft and bendable. However, a
Jeweler A bench jeweler is an artisan who uses a combination of skills to make and repair jewelry. Some of the more common skills that a bench jeweler might employ include antique restoration, silversmith, Goldsmith, stone setting, engraving, fabrica ...
may intentionally use work hardening to strengthen wearable objects that are exposed to stress, such as
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
.


Aluminum

Devices made from aluminum and its alloys, such as aircraft, must be carefully designed to minimize or evenly distribute flexure, which can lead to work hardening and, in turn, stress cracking, possibly causing catastrophic failure. For this reason modern aluminum aircraft will have an imposed working lifetime (dependent upon the type of loads encountered), after which the aircraft must be retired.


References


Bibliography

*. * {{DEFAULTSORT:Work Hardening Industrial processes Metallurgical processes Metalworking Strengthening mechanisms of materials