HOME
        TheInfoList






Wires overhead

A wire is a single usually cylindrical, flexible strand or rod of metal. Wires are used to bear mechanical loads or electricity and telecommunications signals. Wire is commonly formed by drawing the metal through a hole in a die or draw plate. Wire gauges come in various standard sizes, as expressed in terms of a gauge number. The term 'wire' is also used more loosely to refer to a bundle of such strands, as in "multistranded wire", which is more correctly termed a wire rope in mechanics, or a cable in electricity.

Wire comes in solid core, stranded, or braided forms. Although usually circular in cross-section, wire can be made in square, hexagonal, flattened rectangular, or other cross-sections, either for decorative purposes, or for technical purposes such as high-efficiency voice coils in loudspeakers. Edge-wound[1] coil springs, such as the Slinky toy, are made of special flattened wire.

History

In antiquity, jewelry often contains, in the form of chains and applied decoration, large amounts of wire that is accurately made and which must have been produced by some efficient, if not technically advanced, means. In some cases, strips cut from metal sheet were made into wire by pulling them through perforations in stone beads. This causes the strips to fold round on themselves to form thin tubes. This strip drawing technique was in use in Egypt by the 2nd Dynasty. From the middle of the 2nd millennium BCE most of the gold wires in jewellery are characterised by seam lines that follow a spiral path along the wire. Such twisted strips can be converted into solid round wires by rolling them between flat surfaces or the strip wire drawing method. The strip twist wire manufacturing method was superseded by drawing in the ancient Old World sometime between about the 8th and 10th centuries AD.[2] There is some evidence for the use of drawing further East prior to this period.[3]

Square and hexagonal wires were possibly made using a swaging technique. In this method a metal rod was struck between grooved metal blocks, or between a grooved punch and a grooved metal anvil. Swaging is of great antiquity, possibly dating to the beginning of the 2nd millennium BCE in Egypt and in the Bronze and Iron Ages in Europe for torcs and fibulae. Twisted square-section wires are a very common filigree decoration in early Etruscan jewelry.

In about the middle of the 2nd millennium BCE, a new category of decorative tube was introduced which imitated a line of granules. True beaded wire, produced by mechanically distorting a round-section wire, appeared in the Eastern Mediterranean and Italy in the seventh century BCE, perhaps disseminated by the Phoenicians. Beaded wire continued to be used in jewellery into modern times, although it largely fell out of favour in about the tenth century CE when two drawn rou

A wire is a single usually cylindrical, flexible strand or rod of metal. Wires are used to bear mechanical loads or electricity and telecommunications signals. Wire is commonly formed by drawing the metal through a hole in a die or draw plate. Wire gauges come in various standard sizes, as expressed in terms of a gauge number. The term 'wire' is also used more loosely to refer to a bundle of such strands, as in "multistranded wire", which is more correctly termed a wire rope in mechanics, or a cable in electricity.

Wire comes in solid core, stranded, or braided forms. Although usually circular in cross-section, wire can be made in square, hexagonal, flattened rectangular, or other cross-sections, either for decorative purposes, or for technical purposes such as high-efficiency voice coils in loudspeakers. Edge-wound[1] coil springs, such as the Slinky toy, are ma

Wire comes in solid core, stranded, or braided forms. Although usually circular in cross-section, wire can be made in square, hexagonal, flattened rectangular, or other cross-sections, either for decorative purposes, or for technical purposes such as high-efficiency voice coils in loudspeakers. Edge-wound[1] coil springs, such as the Slinky toy, are made of special flattened wire.

In antiquity, jewelry often contains, in the form of chains and applied decoration, large amounts of wire that is accurately made and which must have been produced by some efficient, if not technically advanced, means. In some cases, strips cut from metal sheet were made into wire by pulling them through perforations in stone beads. This causes the strips to fold round on themselves to form thin tubes. This strip drawing technique was in use in Egypt by the 2nd Dynasty. From the middle of the 2nd millennium BCE most of the gold wires in jewellery are characterised by seam lines that follow a spiral path along the wire. Such twisted strips can be converted into solid round wires by rolling them between flat surfaces or the strip wire drawing method. The strip twist wire manufacturing method was superseded by drawing in the ancient Old World sometime between about the 8th and 10th centuries AD.[2] There is some evidence for the use of drawing further East prior to this period.[3]

Square and hexagonal wires were possibly made using a swaging technique. In this method a metal rod was struck between grooved metal blocks, or between a grooved punch and a grooved metal anvil. Swaging is of great antiquity, possibly dating to the beginning of the 2nd millennium BCE in Egypt and in the Bronze and Iron Ages in Europe for torcs and fibulae. Twisted square-section wires are a very common filigree decoration in early Etruscan jewelry.

In about the middle of the 2nd millennium BCE, a new category of decorative tube was introduced which imitated a line of granules. True beaded wire, produced by mechanically distorting a round-section wire, appeared in the Eastern Mediterranean and Italy in the seventh century BCE, perhaps disseminated by the Phoenicians. Beaded wire continued to be used in jewellery into modern times, although it largely fell out of favour in about the tenth century CE when two drawn round wires, twisted together to form what are termed 'ropes', provided a simpler-to-make alternative. A forerunner to beaded wire may be the notched strips and wires which first occur from around 2000 BCE in Anatolia.

Sophie Ryder's galvanised wire sculpture Sitting at the Yorkshire Sculpture Park

Wire was drawn in England from the medieval period. The wire was used to make wool cards and pins, manufactured goods whose import was prohibited by Edward IV in 1463.[4] The first wire mill in Great Britain was established at Tintern in about 1568 by the founders of the swaging technique. In this method a metal rod was struck between grooved metal blocks, or between a grooved punch and a grooved metal anvil. Swaging is of great antiquity, possibly dating to the beginning of the 2nd millennium BCE in Egypt and in the Bronze and Iron Ages in Europe for torcs and fibulae. Twisted square-section wires are a very common filigree decoration in early Etruscan jewelry.

In about the middle of the 2nd millennium BCE, a new category of decorative tube was introduced which imitated a line of granules. True beaded wire, produced by mechanically distorting a round-section wire, appeared in the Eastern Mediterranean and Italy in the seventh century BCE, perhaps disseminated by the Phoenicians. Beaded wire continued to be used in jewellery into modern times, although it largely fell out of favour in about the tenth century CE when two drawn round wires, twisted together to form what are termed 'ropes', provided a simpler-to-make alternative. A forerunner to beaded wire may be the notched strips and wires which first occur from around 2000 BCE in Anatolia.

Wire was drawn in England from the medieval period. The wire was used to make wool cards and pins, manufactured goods whose import was prohibited by Edward IV in 1463.[4] The first wire mill in Great Britain was established at Tintern in about 1568 by the founders of the Company of Mineral and Battery Works, who had a monopoly on this.[5] Apart from their second wire mill at nearby Whitebrook,[6] there were no other wire mills before the second half of the 17th century. Despite the existence of mills, the drawing of wire down to fine sizes continued to be done manually.

According to a description in the early 20th century, "[w]ire is usually drawn of cylindrical form; but it may be made of any desired section by varying the outline of the holes in the draw-plate through which it is passed in the process of manufacture. The draw-plate or die is a piece of hard cast-iron or hard steel, or for fine work it may be a diamond or a ruby. The object of utilising precious stones is to enable the dies to be used for a considerable period without losing their size, and so producing wire of incorrect diameter. Diamond dies must be rebored when they have lost their original diameter of hole, but metal dies are brought down to size again by hammering up the hole and then drifting it out to correct diameter with a punch."[7]

Uses[According to a description in the early 20th century, "[w]ire is usually drawn of cylindrical form; but it may be made of any desired section by varying the outline of the holes in the draw-plate through which it is passed in the process of manufacture. The draw-plate or die is a piece of hard cast-iron or hard steel, or for fine work it may be a diamond or a ruby. The object of utilising precious stones is to enable the dies to be used for a considerable period without losing their size, and so producing wire of incorrect diameter. Diamond dies must be rebored when they have lost their original diameter of hole, but metal dies are brought down to size again by hammering up the hole and then drifting it out to correct diameter with a punch."[7]

manufacturers, such as the wire netting industry, engineered springs, wire-cloth making and wire rope spinning, in which it occupies a place analogous to a textile fiber. Wire-cloth of all degrees of strength and fineness of mesh is used for sifting and screening machinery, for draining paper pulp, for window screens, and for many other purposes. Vast quantities of aluminium, copper, nickel and steel wire are employed for telephone and data cables, and as conductors in electric power transmission, and heating. It is in no less demand for fencing, and much is consumed in the construction of suspension bridges, and cages, etc. In the manufacture of stringed musical instruments and scientific instruments, wire is again largely used. Carbon and stainless spring steel wire have significant applications in engineered springs for critical automotive or industrial manufactured parts/components. Pin and hairpin making; the needle and fish-hook industries; nail, peg, and rivet making; and carding machinery consume large amounts of wire as feedstock.[7]

Not all metals and metallic alloys possess the physical properties necessary to make useful wire. The metals must in the first place be ductile and strong in tension, the quality on which the utility of wire principally depends. The principal metals suitable for wire, possessing almost equal ductility, are platinum, silver, iron, copper, aluminium, and gold; and it is only from these and certain of their alloys with other metals, principally brass and bronze, that wire is prepared.[7]

By careful treatment, extremely thin wire can be produced. Special purpose wire is however made from other metals (e.g. tungsten wire for light bulb and vacuum tube filaments, because of its high melting temperature). Copper wires are also plated with other metals, such as tin, nickel, and silver to handle different temperatures, provide lubrication, and provide easier stripping of rubber insulation from copper.

Metallic wires are often used for the lower-pitched sound-producing "strings" in stringed instruments, such as violins, cellos, and guitars, and percussive string instruments such as pianos, dulcimers, dobros, and cimbaloms. To increase the mass per unit length (and thus lower the pitch of the sound even further), the main wire may sometimes be helically wrapped with another, finer strand of wire. Suc

Not all metals and metallic alloys possess the physical properties necessary to make useful wire. The metals must in the first place be ductile and strong in tension, the quality on which the utility of wire principally depends. The principal metals suitable for wire, possessing almost equal ductility, are platinum, silver, iron, copper, aluminium, and gold; and it is only from these and certain of their alloys with other metals, principally brass and bronze, that wire is prepared.[7]

By careful treatment, extremely thin wire can be produced. Special purpose wire is however made from other metals (e.g. tungsten wire for light bulb and vacuum tube filaments, because of its high melting temperature). Copper wires are also plated with other metals, such as tin, nickel, and silver to handle different temperatures, provide lubrication, and provide easier stripping of rubber insulation from copper.

Metallic wires are often used for the lower-pitched sound-producing "strings" in stringed instruments, such as violins, cellos, and guitars, and percussive string instruments such as pianos, dulcimers, dobros, and cimbaloms. To increase the mass per unit length (and thus lower the pitch of the sound even further), the main wire may sometimes be helically wrapped with another, finer strand of wire. Such musical strings are said to be "overspun"; the added wire may be circular in cross-section ("round-wound"), or flattened before winding ("flat-wound").

Wire is often reduced to the desired diameter and properties by repeated drawing through progressively smaller dies, or traditionally holes in draw plates. After a number of passes the wire may be annealed to facilitate more drawing or, if it is a finished product, to maximise ductility and conductivity.

Finishing, jacketing, and insulating

Coaxial cable, one example of a jacketed and insulated wire