Wave radar
   HOME

TheInfoList



OR:

Wave radar is a type of
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
for measuring
wind wave In fluid dynamics, a wind wave, water wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result from the wind blowing over the water surface. The contact distance in the direction of ...
s. Several instruments based on a variety of different concepts and techniques are available, and these are all often called. This article (see also Grønlie 2004), gives a brief description of the most common ground-based radar
remote sensing Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Ear ...
techniques. Instruments based on radar remote sensing techniques have become of particular interest in applications where it is important to avoid direct contact with the water surface and avoid structural interference. A typical case is wave measurements from an offshore platform in deep water, where swift currents could make mooring a wave buoy enormously difficult. Another interesting case is a ship under way, where having instruments in the sea is highly impractical and interference from the ship's hull must be avoided.


Radar remote sensing


Terms and definitions

Basically there are two different ''classes'' of radar remote sensors for ocean waves. * Direct sensor measures directly some relevant parameter of the wave system (like surface elevation or water particle velocity). * Indirect sensors observe the surface waves via the interaction with some other physical process as for example the radar cross section of the sea surface. Microwave radars may be used in two different ''modes''; * The near vertical mode. The radar echo is generated by specular reflections from the sea surface. * The low grazing angle mode. The radar echo is generated by
Bragg scattering In physics and chemistry , Bragg's law, Wulff–Bragg's condition or Laue–Bragg interference, a special case of Laue diffraction, gives the angles for coherent scattering of waves from a crystal lattice. It encompasses the superposition of wave ...
, hence wind generated surface ripple (
capillary waves A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension. Capillary waves are common in nature, and are often referred to as ripples. The wav ...
) must be present. The backscattered signal will be modulated by the large surface gravity waves and the gravity wave information is derived from the modulation of the backscattered signal. An excellent presentation of the theories of microwave remote sensing of the sea surface is given by Plant and Shuler (1980). The radar footprint (the size of the surface area which is illuminated by the radar) must be small in comparison with all ocean
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s of interest. The radar spatial resolution is determined by the bandwidth of the radar signal (see radar signal characteristics) and the beamwidth of the radar antenna. The beam of a microwave antenna diverges. Consequently, the resolution decreases with increasing range. For all practical purposes, the beam of an IR radar (
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
) does not diverge. Therefore, its resolution is independent of range. HF radars utilize the Bragg scattering mechanism and do always operate at very low grazing angles. Due to the low frequency of operation the radar waves are backscattered directly from the
gravity wave In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere a ...
s and surface ripple need not be present. Radar transceivers may be
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deriv ...
or non-coherent. Coherent radars measure Doppler-modulation as well as amplitude modulation, while non-coherent radars only measure amplitude modulation. Consequently, a non-coherent radar echo contains less information about the sea surface properties. Examples of non-coherent radars are conventional marine navigation radars. The radar transmitter waveform may be either unmodulated continuous wave, modulated or pulsed. An unmodulated continuous wave radar has no range resolution, but can resolve targets on the basis of different velocity, while a modulated or pulsed radar can resolve echoes from different ranges. The radar waveform plays a very important role in radar theory (Plant and Shuler, 1980).


Factors influencing performance

*Mode of operation or measurement geometry (vertical or grazing) *Class of system (direct or indirect) *Frequency of operation *Radar waveform (unmodulated CW or modulated/pulsed) *Type of transceiver (coherent or non-coherent) *Radar antenna properties


Remote sensing techniques

An excellent survey of different radar techniques for remote sensing of waves is given by Tucker (1991).


Microwave rangefinders

Microwave
rangefinders A rangefinder (also rangefinding telemeter, depending on the context) is a device used to measure distances to remote objects. Originally optical devices used in surveying, they soon found applications in other fields, such as photography an ...
also operate in vertical mode at GHz frequencies and are not as affected by fog and water spray as the
laser rangefinder A laser rangefinder, also known as a laser telemeter, is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in ...
. A
continuous wave frequency modulated Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which ...
(CWFM) or pulsed radar waveform is normally used to provide range resolution. Since the beam diverges, the linear size of the footprint is directly proportional to range, while the area of the footprint is proportional to the square of range. One example of a microwave range finder is the Miros SM-094, which is designed to measure waves and water level, including
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
s. This sensor is used as an air gap (bridge clearance) sensor in
NOAA The National Oceanic and Atmospheric Administration (abbreviated as NOAA ) is an United States scientific and regulatory agency within the United States Department of Commerce that forecasts weather, monitors oceanic and atmospheric conditio ...
'
PORTS
system. Another example is th
WaveRadar REX
which is a derivative of a Rosemount tank radar. From data on the elevation of the surface of the water at three or more locations, a directional spectrum of wave height can be computed. The algorithm is similar to the one which generates a directional spectrum from data on heave (vertical motion), pitch and roll at a single location, as provided by a disc-shaped wave buoy. An array of three vertical radars, having footprints at the vertices of a horizontal, equilateral triangle, can provide the necessary data on water surface elevation. “Directional WaveGuide” is a commercial radar system based on this technique. It is available from the Dutch companies Enraf an
Radac


Marine navigation radars

Marine navigation radars (
X band The X band is the designation for a band of frequencies in the microwave radio region of the electromagnetic spectrum. In some cases, such as in communication engineering, the frequency range of the X band is rather indefinitely set at approxi ...
) provide sea clutter images which contain a pattern resembling a sea wave pattern. By digitizing the radar video signal it can be processed by a digital computer. Sea surface parameters may be calculated on the basis of these digitized images. The marine navigation radar operates in low grazing angle mode and wind generated surface ripple must be present. The marine navigation radar is non-coherent and is a typical example of an indirect wave sensor, because there is no direct relation between wave height and radar back-scatter modulation amplitude. An empirical method of wave spectrum scaling is normally employed. Marine navigation radar based wave sensors are excellent tools for wave direction measurements. A marine navigation radar may also be a tool for surface current measurements. Point measurements of the current vector as well as current maps up to a distance of a few km can be provided (Gangeskar, 2002). Miros WAVEX has its main area of application as directional wave measurements from moving ships. Another example of a marine radar based system is OceanWaves WaMoS II.


The range gated pulsed Doppler microwave radar

The range gated pulsed Doppler microwave radar operates in low grazing angle mode. By using several antennas it may be used as a directional wave sensor, basically measuring the directional spectrum of the horizontal water particle velocity. The velocity spectrum is directly related to the wave height spectrum by a mathematical model based on linear wave theory and accurate measurements of the wave spectrum can be provided under most conditions. As measurements are taken at a distance from the platform on which it is mounted, the wave field is to a small degree disturbed by interference from the platform structure.
Miros Wave and current radar
is the only available wave sensor based on the range gated pulsed Doppler radar technique. This radar also uses the dual frequency technique (see below) to perform point measurements of the surface current vector


The dual frequency microwave radar

The dual frequency microwave radar transmits two microwave frequencies simultaneously. The frequency separation is chosen to give a “spatial beat” length which is in the range of the water waves of interest. The dual frequency radar may be considered a microwave equivalent of the high frequency (HF) radar (see below). The dual frequency radar is suitable for the measurement of surface current. As far as wave measurements are concerned, the back-scatter processes are too complicated (and not well understood) to allow useful measurement accuracy to be attained.


The HF radar

The HF rada
CODAR SeaSonde
an
Helzel WERA
are well established as a powerful tool for sea current measurements up to a range of 300 km. It operates in the HF and low VHF frequencies band corresponding to a radar wavelength in the range of 10 to 300m. The Doppler shift of the first order Bragg lines of the radar echo is used to derive sea current estimates in very much the same way as for the dual frequency microwave radar. Two radar installations are normally required, looking at the same patch of the sea surface from different angles.CODAR Ocean Sensors (COS)
/ref> The latest generation of shore-based ocean radar can reach more than 200 km for ocean current mapping and more than 100 km for wave measurement
Helzel WERA
For all ocean radars, the accuracy in range is excellent. With shorter ranges, the range resolution gets finer. The angular resolution and accuracy depends on the used antenna array configuration and applied algorithms (direction finding or beam forming). The WERA system provides the option to use both techniques; the compact version with direction finding or the array type antenna system with beam forming methods.


Specialized X-Band

The FutureWaves technology was originally developed as an Environmental Ship and Motion Forecasting (ESMF) system for the Navy's ONR (Office of Naval Research) by General Dynamics' Applied Physical Sciences Corporation. The technology was adapted to be released in the commercial market and made its first public appearance at the 2017 Offshore Technology Conference in Houston Texas. This technology differs from existing wave forecasting systems by using a customized wave sensing radar capable of measuring backscatter Doppler out to ranges of approximately 5 km. The radar antenna is vertically polarized to enhance the sea-surface backscatter signal. It also uses an innovative radar signal processing scheme that addresses the inherently noisy backscatter signals through a mathematical process termed least squares inversion. This approach applies a highly over-determined filter to the radar data, and rejects radar scans that do not observe incoming waves. The result is an accurate representation of the propagating incident wave field that will force ship motions over a 2-3 minute window. The wave processing algorithms also enable real-time calculation of wave field two-dimensional power spectra and significant wave height similar to that provided by a wave buoy. It also uses a vessel motion prediction process that relies on a pre-calculated force/response database. Dynamic motional degrees of freedom are then represented as a lumped mechanical system whose future motions are predicted by numerically solving a multi-degree-of-freedom, forced, coupled
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
with initial inertial state provided by vessel motion sensor outputs. The time-domain solution allows for nonlinear forcing mechanisms, such as quadratic roll damping and roll control systems, to be captured in the forecasting. Finally, it uses the Gravity open architecture
middleware Middleware is a type of computer software that provides services to software applications beyond those available from the operating system. It can be described as "software glue". Middleware makes it easier for software developers to implement ...
solution to integrate the sensor feeds, processing subroutines and user displays. This open architecture approach allows for the implementation of customized operator displays along with physics based models of specific vessels and machinery (e.g. cranes) into the system.


References

# # # # # #


External links

Microwave range finders:
Physical Oceanographic Real-Time System (PORTS)

NOAA Technical Report NOS CO-OPS 042; ''Microwave Air Gap-Bridge Clearance Sensor; Test, Evaluation, and Implementation Report''

ESEAS RI, ''Assessment of accuracy and operational properties of different tide gauge sensors.''

The Global Sea Level Observing System

Volume IV of the IOC ''Manual on Sea Level Measurement and Interpretation''
The range gated pulsed Doppler microwave radar:

X-band based wave sensors: * ttp://www.radac.nl Radac level, tide and wave monitoring systems* ttp://www.oceanwaves.de/index.html WaMoS II (OceanWaves GmbH)
Remocean

Miros AS
{{Webarchive, url=https://web.archive.org/web/20071214210806/http://www.miros.no/ , date=2007-12-14
FutureWaves
HF-Radar:
CODAR Ocean Sensors

WERA (Helzel Messtechnik GmbH)
Sea radars Water waves