Water on terrestrial planets of the Solar System
   HOME

TheInfoList



OR:

The presence of
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
on the
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
s of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
( Mercury,
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
,
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
,
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
, and the closely related Earth's
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
) varies with each planetary body, with the exact origins remaining unclear. Additionally, the terrestrial dwarf planet
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
is known to have water ice on its surface.


Water inventories


Mars

A significant amount of surface
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
has been observed globally by the
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
Odyssey GRS. Stoichiometrically estimated
water mass An oceanographic water mass is an identifiable body of water with a common formation history which has physical properties distinct from surrounding water. Properties include temperature, salinity, chemical - isotopic ratios, and other physical ...
fractions indicate that—when free of
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
—the near surface at the poles consists almost entirely of water covered by a thin veneer of fine material. This is reinforced by
MARSIS MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) is a low frequency, pulse-limited radar sounder and altimeter developed by the University of Rome La Sapienza and Alenia Spazio (today Thales Alenia Space Italy). The Italian MAR ...
observations, with an estimated of water at the southern polar region with Water Equivalent to a Global layer (WEG) deep. Additional observations at both poles suggest the total WEG to be , while the Mars Odyssey NS observations places the lower bound at ~ depth. Geomorphic evidence favors significantly larger quantities of surface water over geologic history, with WEG as deep as . The current atmospheric reservoir of water, though important as a conduit, is insignificant in volume with the WEG no more than . Since the typical surface pressure of the current atmosphere (~) is less than the triple point of H2O, liquid water is unstable on the surface unless present in
sufficiently large In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it doesn't have the said property across all its ordered instances, but will after some instances have pa ...
volumes. Furthermore, the average global temperature is ~, even below the eutectic
freezing point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depend ...
of most brines. For comparison, the highest diurnal surface temperatures at the two MER sites have been ~.


Mercury

Due to its proximity to the Sun and lack of visible water on its surface, the planet Mercury had been thought of as a non- volatile planet. Data retrieved from the Mariner 10 mission found evidence of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
(H),
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
(He), and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
(O) in Mercury's exosphere. Volatiles have also been found near the polar regions. MESSENGER, however, sent back data from multiple on-board instruments that led scientists to the conclusion that Mercury was volatile rich. Mercury is rich in
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
(K) which has been suggested as a proxy for volatile depletion on the planetary body. This leads to assumption that Mercury could have accreted water on its surface, relative to that of Earth if its proximity had not been so near that of the Sun.


Earth

Earth's hydrosphere contains ~1.46×1021 kg (3.22×1021 lb) of H2O and sedimentary rocks contain ~0.21×1021 kg (4.6×1020 lb), for a total crustal inventory of ~1.67×1021 kg (3.68×1021 lb) of H2O. The mantle inventory is poorly constrained in the range of 0.5×1021–4×1021 kg (1.1×1021–8.8×1021 lb). Therefore, the bulk inventory of H2O on Earth can be conservatively estimated as 0.04% of Earth's mass (~2.3×1021 kg (5.1×1021 lb)).


Earth's Moon

Recent observation made by a number of spacecraft confirmed significant amounts of
lunar water Lunar water is water that is present on the Moon. Diffuse water molecules can persist at the Moon's sunlit surface, as discovered by NASA's SOFIA observatory in 2020. Gradually water vapor is decomposed by sunlight, leaving hydrogen and oxyg ...
. The secondary ion mass spectrometer (SIMS) measured H2O as well as other possible volatiles in lunar
volcanic glass Volcanic glass is the amorphous solid, amorphous (uncrystallized) product of rapidly cooling magma. Like all types of glass, it is a state of matter intermediate between the closely packed, highly ordered array of a crystal and the highly disorde ...
bubbles. In these volcanic glasses, 4-46 ppm by weight (wt) of H2O was found and then modeled to have been 260-745 ppm wt prior to the lunar volcanic eruptions. SIMS also found lunar water in the rock samples the Apollo astronauts returned to Earth. These rock samples were tested in three different ways and all came to the same conclusion that the Moon contains water. There are three main data sets for water abundance on the lunar surface: highland samples, KREEP samples, and pyroclastic glass samples. Highlands samples were estimated for the lunar magma ocean at 1320-5000 ppm wt of H2O in the beginning. The urKREEP sample estimates a 130-240 ppm wt of H2O, which is similar to the findings in the current Highland samples (before modeling). Pyroclastic glass sample beads were used to estimate the water content in the mantle source and the bulk silicate Moon. The mantle source was estimated at 110 ppm wt of H2O and the bulk silicate Moon contained 100-300 ppm wt of H2O.


Venus

The current Venusian atmosphere has only ~200 mg/kg H2O(g) in its atmosphere and the pressure and temperature regime makes water unstable on its surface. Nevertheless, assuming that early Venus's H2O had a ratio between deuterium (heavy hydrogen, 2H) and hydrogen (1H) similar to Earth's Vienna Standard Mean Ocean Water (
VSMOW Vienna Standard Mean Ocean Water (VSMOW) is an isotopic standard for water. Despite the name, VSMOW is pure water with no salt or other chemicals found in the oceans. The VSMOW standard was promulgated by the International Atomic Energy Agency ...
) of 1.6×10−4,
National Institute of Standards and Technology The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical s ...
(2005)
Report of Investigation
/ref> the current D/H ratio in the Venusian atmosphere of 1.9×10−2, at nearly ×120 of Earth's, may indicate that Venus had a much larger H2O inventory. While the large disparity between terrestrial and Venusian D/H ratios makes any estimation of Venus's geologically ancient water budget difficult, its mass may have been at least 0.3% of Earth's hydrosphere. Estimates based on Venus's levels of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
suggest that the planet has lost anywhere from of surface water up to "an Earth's ocean's worth".Owen, (2007)
news.nationalgeographic.com/news/2007/11/071128-venus-earth_2.html
/ref>


Accretion of water by Earth and Mars

The D/H isotopic ratio is a primary constraint on the source of H2O of terrestrial planets. Comparison of the planetary D/H ratios with those of carbonaceous chondrites and comets enables a tentative determination of the source of H2O. The best constraints for accreted H2O are determined from non-atmospheric H2O, as the D/H ratio of the atmospheric component may be subject to rapid alteration by the preferential loss of H unless it is in isotopic equilibrium with surface H2O. Earth's VSMOW D/H ratio of 1.6×10−4 and modeling of impacts suggest that the cometary contribution to crustal water was less than 10%. However, much of the water could be derived from Mercury-sized planetary embryos that formed in the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
beyond 2.5 AU. Mars's original D/H ratio as estimated by deconvolving the atmospheric and magmatic D/H components in
Martian meteorites A Martian meteorite is a rock that formed on Mars, was ejected from the planet by an impact event, and traversed interplanetary space before landing on Earth as a meteorite. , 277 meteorites had been classified as Martian, less than half a perc ...
(e.g., QUE 94201), is ×(1.9+/-0.25) the VSMOW value. The higher D/H and impact modeling (significantly different from Earth due to Mars's smaller mass) favor a model where Mars accreted a total of 6% to 27% the mass of the current Earth hydrosphere, corresponding respectively to an original D/H between ×1.6 and ×1.2 the SMOW value. The former enhancement is consistent with roughly equal asteroidal and cometary contributions, while the latter would indicate mostly asteroidal contributions. The corresponding WEG would be , consistent with a 50% outgassing efficiency to yield ~ WEG of surface water. Comparing the current atmospheric D/H ratio of ×5.5 SMOW ratio with the primordial ×1.6 SMOW ratio suggests that ~ of has been lost to space via
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
stripping. The cometary and asteroidal delivery of water to accreting Earth and Mars has significant caveats, even though it is favored by D/H isotopic ratios. Key issues include: # The higher D/H ratios in Martian meteorites could be a consequence of biased sampling since Mars may have never had an effective crustal recycling process # Earth's Primitive
upper mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from appr ...
estimate of the 187Os/188Os isotopic ratio exceeds 0.129, significantly greater than that of carbonaceous chondrites, but similar to anhydrous ordinary chondrites. This makes it unlikely that planetary embryos compositionally similar to carbonaceous chondrites supplied water to Earth # Earth's atmospheric content of Ne is significantly higher than would be expected had all the rare gases and H2O been accreted from planetary embryos with carbonaceous chondritic compositions. An alternative to the cometary and asteroidal delivery of H2O would be the accretion via physisorption during the formation of the terrestrial planets in the solar nebula. This would be consistent with the thermodynamic estimate of around two Earth masses of
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
within 3AU of the solar accretionary disk, which would exceed by a factor of 40 the mass of water needed to accrete the equivalent of 50 Earth hydrospheres (the most extreme estimate of Earth's bulk H2O content) per terrestrial planet. Even though much of the nebular H2O(g) may be lost due to the high temperature environment of the accretionary disk, it is possible for physisorption of H2O on accreting grains to retain nearly three Earth hydrospheres of H2O at temperatures. This adsorption model would effectively avoid the 187Os/188Os isotopic ratio disparity issue of distally-sourced H2O. However, the current best estimate of the nebular D/H ratio spectroscopically estimated with Jovian and Saturnian atmospheric CH4 is only 2.1×10−5, a factor of 8 lower than Earth's VSMOW ratio. It is unclear how such a difference could exist, if physisorption were indeed the dominant form of H2O accretion for Earth in particular and the terrestrial planets in general.


See also

* Extraterrestrial liquid water#Liquid water in the Solar System *
Ocean world An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in form of oceans, either beneath the surface, as subsurface oceans, or on the surfa ...


References

{{Solar System * Planetary science