Vanadium(IV) oxide
   HOME

TheInfoList



OR:

Vanadium(IV) oxide or vanadium dioxide is an inorganic compound with the formula VO2. It is a dark blue solid. Vanadium(IV) dioxide is
amphoteric In chemistry, an amphoteric compound () is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used. One type of amphoteric species are amphipro ...
, dissolving in non-oxidising acids to give the blue vanadyl ion, Osup>2+ and in alkali to give the brown 4O9sup>2− ion, or at high pH O4sup>4−. VO2 has a phase transition very close to room temperature (~). Electrical resistivity, opacity, etc, can change up several orders. Owing to these properties, it has been used in surface coating, sensors, and imaging. Potential applications include use in memory devices, phase-change switches,
passive radiative cooling Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zer ...
applications, such as smart windows and roofs, that cool or warm depending on temperature, aerospace communication systems and neuromorphic computing.


Properties


Structure

At temperatures below Tc = , has a
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic s ...
(
space group In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it uncha ...
P21/c) crystal structure. Above Tc, the structure is
tetragonal In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a squar ...
, like
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visib ...
. In the monoclinic phase, the V4+ ions form pairs along the c axis, leading to alternate short and long V-V distances of 2.65 Å and 3.12 Å. In comparison, in the rutile phase the V4+ ions are separated by a fixed distance of 2.96 Å. As a result, the number of V4+ ions in the crystallographic unit cell doubles from the rutile to the monoclinic phase. The equilibrium morphology of rutile particles is acicular, laterally confined by (110) surfaces, which are the most stable termination planes. The surface tends to be oxidized with respect to the stoichiometric composition, with the oxygen adsorbed on the (110) surface forming vanadyl species. The presence of V5+ ions at the surface of films has been confirmed by
X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, ...
.


Memory effect

In 2022, a to date unique and unknown feature of the material was reported – it can "remember" previous external stimuli (via structural rather than electronic states), with potential for e.g. data storage and processing, potentially including in neuromorphic computing.


Electronic

At the rutile to monoclinic transition temperature (), also exhibits a metal to
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
transition in its electronic structure: the rutile phase is metallic while the monoclinic phase is semiconducting. The optical band gap of VO2 in the low-temperature monoclinic phase is about 0.7 eV.


Thermal

Metallic VO2 contradicts the
Wiedemann–Franz law In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution of the thermal conductivity (''κ'') to the electrical conductivity (''σ'') of a metal is proportional to the temperature (''T''). : \frac \kapp ...
that holds that the ratio of the electronic contribution of the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
(''κ'') to the electrical conductivity (''σ'') of a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
is proportional to the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
. The thermal conductivity that could be attributed to electron movement was 10% of the amount predicted by the Wiedemann–Franz law. The reason for this appears to be the fluidic way that the electrons move through the material, reducing the typical random electron motion. Thermal conductivity ~ 0.2 W/m⋅K, electrical conductivity ~ 8.0 ×10^5 S/m. Potential applications include converting waste heat from engines and appliances into electricity, and windows or window coverings that keep buildings cool. Thermal conductivity varied when VO2 was mixed with other materials. At a low temperature it could act as an insulator, while conducting heat at a higher temperature.


Synthesis and structure

Following the method described by Berzelius, is prepared by
comproportionation Comproportionation or synproportionation is a chemical reaction where two reactants containing the same element but with different oxidation numbers, form a compound having an intermediate oxidation number. It is the opposite of disproportionation. ...
of vanadium(III) oxide and
vanadium(V) oxide Vanadium(V) oxide (''vanadia'') is the inorganic compound with the formula V2 O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because ...
: : + → 4 At room temperature VO2 has a distorted
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visib ...
structure with shorter distances between pairs of V atoms indicating metal-metal bonding. Above , the structure changes to an undistorted rutile structure and the metal-metal bonds are broken causing an increase in electrical conductivity and magnetic susceptibility as the bonding electrons are "released". The origin of this insulator to metal transition remains controversial and is of interest both for condensed matter physics and practical applications, such as electrical switches, tunable electrical filters, power limiters, nano-oscillators, memristors,
field-effect transistors The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of Electric current, current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''dra ...
and
metamaterials A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
.


Infrared reflectance

expresses temperature-dependent reflective properties. When heated from room temperature to , the material's thermal radiation rises normally until , before suddenly appearing to drop to around . At room temperature, is almost transparent to infrared light. As its temperature rises it gradually changes to reflective. At intermediate temperatures it behaves as a highly absorbing dielectric. A thin film of vanadium oxide on a highly reflecting substrate (for specific infrared wavelengths) such as sapphire is either absorbing or reflecting, dependent on temperature. Its emissivity varies considerably with temperature. When the vanadium oxide transitions with increased temperature, the structure undergoes a sudden decrease in emissivity – looking colder to infrared cameras than it really is. Varying the substrate materials (e.g., to indium tin oxide), as well as modifying the vanadium oxide coating using doping, straining, or other processes, alters the wavelengths and temperature ranges at which the thermal effects are observed. Nanoscale structures that appear naturally in the materials' transition region can suppress thermal radiation as the temperature rises. Doping the coating with
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
lowers the effect's thermal range to room temperature.


Uses


Infrared radiation management

Undoped and tungsten-doped vanadium dioxide films can act as "spectrally-selective" coatings to block
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
transmission and reduce the loss of building interior heat through windows. Varying the amount of tungsten allows regulating the phase transition temperature at a rate of per 1 atomic percent of tungsten. The coating has a slight yellow-green color. Other potential applications of its thermal properties include passive camouflage, thermal beacons, communication, or to deliberately speed up or slow down cooling. These applications could be useful for a variety of structures from homes to satellites. Vanadium dioxide can act as extremely fast
optical modulator An optical modulator is a device which is used to modulate a beam of light. The beam may be carried over free space, or propagated through an optical waveguide (optical fibre). Depending on the parameter of a light beam which is manipulated, modul ...
s,
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
modulators for
missile guidance Missile guidance refers to a variety of methods of guiding a missile or a guided bomb to its intended target. The missile's target accuracy is a critical factor for its effectiveness. Guidance systems improve missile accuracy by improving its P ...
systems, cameras, data storage, and other applications. The
thermochromic Thermochromism is the property of substances to change color due to a change in temperature. A mood ring is an excellent example of this phenomenon, but thermochromism also has more practical uses, such as baby bottles which change to a differen ...
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
between the transparent semiconductive and reflective conductive phase, occurring at , can happen in times as short as 100 femtoseconds.


Passive radiative cooling

Vanadium dioxide is essential to achieving temperature-based 'switchable' cooling and heating effects for
passive daytime radiative cooling Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zer ...
surfaces without additional energy input. Temperature-based switching can be essential to mitigate potential "overcooling" effects of radiative cooling devices in urban environments, especially those with hot summers and cool winters, making it possible for radiative coolers to also function as passive heating devices when necessary.


Phase change computing and memory

The insulator-metal phase transition in VO2 can be manipulated at the nanoscale using a biased conducting atomic force microscope tip, suggesting applications in computing and information storage.


See also

*
Vanadium redox battery The vanadium redox battery (VRB), also known as the vanadium flow battery (VFB) or vanadium redox flow battery (VRFB), is a type of rechargeable flow battery. It employs vanadium ions as charge carriers. The battery uses vanadium's ability ...


References


Bibliography

*


External links

{{Oxides Vanadium(IV) compounds Transition metal oxides