United States Nuclear Detonation Detection System
   HOME

TheInfoList



OR:

Vela was the name of a group of
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioi ...
s developed as the Vela Hotel element of
Project Vela Project Vela was a project undertaken by the United States Department of DefenseU.S. Department of Defense. Advanced Research Projects Agency. (1961, July 20). ADDENDUM to: Proceedings of Symposium: Project Vela (1st ed.) (263145). Washington, DC: ...
by the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
to detect
nuclear detonation A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, t ...
s to monitor compliance with the 1963
Partial Test Ban Treaty The Partial Test Ban Treaty (PTBT) is the abbreviated name of the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water, which prohibited all test detonations of nuclear weapons except for those conducted ...
by the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
. Vela started out as a small budget research program in 1959. It ended 26 years later as a successful, cost-effective military space system, which also provided scientific data on natural sources of space radiation. In the 1970s, the nuclear detection mission was taken over by the
Defense Support Program The Defense Support Program (DSP) is a program of the United States Space Force that operated the reconnaissance satellites which form the principal component of the ''Satellite Early Warning System'' used by the United States. DSP satellite ...
(DSP) satellites. In the late 1980s, it was augmented by the Navstar
Global Positioning System The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
(GPS) satellites. The program is now called the Integrated Operational NuDet (Nuclear Detonation) Detection System ( IONDS).


Deployment

Twelve satellites were built, six of the Vela Hotel design and six of the Advanced Vela design. The Vela Hotel series was to detect
nuclear test Nuclear weapons tests are experiments carried out to determine nuclear weapons' effectiveness, Nuclear weapon yield, yield, and explosive capability. Testing nuclear weapons offers practical information about how the weapons function, how detona ...
s in space, while the Advanced Vela series was to detect not only nuclear explosions in space but also in the atmosphere. All spacecraft were manufactured by TRW and launched in pairs, either on an
Atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geograp ...
Agena or
Titan III Titan was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contribut ...
-C boosters. They were placed in orbits of 118,000 km (73,000 miles), well above the Van Allen radiation belts. Their
apogee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ell ...
was about one-third of the distance to the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
. The first Vela Hotel pair was launched on October 17, 1963,Encyclopedia Astronautica
Vela nuclear detection surveillance satellites.
one week after the
Partial Test Ban Treaty The Partial Test Ban Treaty (PTBT) is the abbreviated name of the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water, which prohibited all test detonations of nuclear weapons except for those conducted ...
went into effect, and the last in 1965. They had a design life of six months, but were only actually shut down after five years. Advanced Vela pairs were launched in 1967, 1969 and 1970. They had a nominal design life of 18 months, later changed to seven years. However, the last satellite to be shut down was Vehicle 9 in 1984, which had been launched in 1969 and had lasted nearly 15 years. The Vela series began with the launch of Vela 1/2 on October 17, 1963, a flight also marking the maiden voyage of the Atlas-Agena SLV-3 vehicle. The second pair of satellites launched on July 17, 1964, and the third on July 20, 1965. The last launch miscarried slightly when one Atlas vernier engine shut down at liftoff, while the other vernier operated at above-normal thrust levels. This resulted in a slightly lower than normal inclination for the satellites, however the mission was carried out successfully. The problem was traced to a malfunction of the vernier LOX poppet valve. Subsequent Vela satellites were switched to the
Titan IIIC The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the ...
booster due to their increased weight and complexity. Three more sets were launched on April 28, 1967, May 23, 1969, and April 8, 1970. The last pair of Vela satellites operated until 1985, when they were finally shut down, the Air Force claimed them to be the world's longest operating satellites. They remained in orbit until decaying at the end of 1992.


Instruments

The original Vela satellites were equipped with 12 external
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
detectors and 18 internal
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
and
gamma-ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
detectors. They were equipped with Photovoltaic module, solar panels generating 90 watts. The Advanced Vela satellites were additionally equipped with two non-imaging silicon photodiode sensors called ''bhangmeters'' which monitored light levels over sub-millisecond intervals. They could determine the location of a nuclear explosion to within about 3,000 miles. Atmospheric nuclear explosions produce a unique signature, often called a "double-humped curve": a short and intense flash lasting around 1 millisecond, followed by a second much more prolonged and less intense emission of light taking a fraction of a second to several seconds to build up. The effect occurs because the surface of the early fireball is quickly overtaken by the expanding atmospheric shock wave composed of ionised gas. Although it emits a considerable amount of light itself it is opaque and prevents the far brighter fireball from shining through. As the shock wave expands, it cools down becoming more transparent allowing the much hotter and brighter fireball to become visible again. No ''single'' natural phenomenon is known to produce this signature, although there was speculation that the Velas could record exceptionally rare natural double events, such as a meteoroid strike on the spacecraft that produces a bright flash or triggering on a lightning superbolt in the Earth's atmosphere, as may have occurred in the Vela Incident. quote (emphasis added): "They also picked up large lightning flashes, and it was in part from the Vela satellites that we learned about lightning superbolts. About five of every ten million bolts of lightning is classified as a superbolt, which is just what it sounds like: An unusually large bolt of lightning, lasting an unusually long time: About a thousandth of a second. Superbolts are almost always in the upper atmosphere, and usually over the oceans." They were also equipped with sensors which could detect the electromagnetic pulse from an atmospheric explosion. Additional power was required for these instruments, and these larger satellites consumed 120 watts generated from solar panels. Serendipity, Serendipitously, the Vela satellites were the first devices ever to detect cosmic gamma ray bursts.


Controversial observations

Some controversy still surrounds the Vela program since on 22 September 1979 the Vela 5B (also known as Vela 10 and OPS 6911) satellite detected the characteristic double flash of an atmospheric nuclear explosion near the Prince Edward Islands. Still unsatisfactorily explained, this event has become known as the Vela Incident. President Jimmy Carter initially deemed the event to be evidence of a joint Israel–South Africa relations#Alleged nuclear collaboration, Israeli and South African nuclear test, though the now-declassified report of a scientific panel he subsequently appointed while seeking reelection concluded that it was probably not the event of a nuclear explosion. In 2018, a new study confirmed that it is highly likely that it was a nuclear test, conducted by Israel. An alternative explanation involves a magnetosphere, magnetospheric event affecting the instruments. An earlier incident occurred when an intense Solar storm of August 1972, solar storm on August 4, 1972 triggered the system to event mode as if an explosion occurred, but this was quickly resolved by personnel monitoring the data in real-time.


Vela 5A and 5B

The scintillation X-ray detector (XC) aboard Vela 5A and its twin Vela 5B consisted of two 1 mm thick NaI(Tl) crystals mounted on photomultiplier tubes and covered by a 0.13 mm thick beryllium window. Electronic thresholds provided two energy channels, 3–12 keV and 6–12 keV. In addition to the x-ray Nova announcement indicated above the XC Detector aboard Vela 5A and 5B also discovered and announced the first X-Ray Burst ever reported. The announcement of this discovery predated the initial announcement of the discovery of gamma-ray bursts by 2 years. In front of each crystal was a slat collimator providing a full width at half maximum (FWHM) aperture of ~6.1 × 6.1 degrees. The effective detector area was ~26 cm2. The detectors scanned a great circle every 60 seconds, and covered the whole sky every 56 hours. Sensitivity to celestial sources was severely limited by the high intrinsic detector background, equivalent to about 80% of the signal from the Crab Nebula, one of the brightest sources in the sky at these wavelengths. The Vela 5B satellite X-ray detector remained functional for over ten years.


Vela 6A and 6B

Like the previous Vela 5 satellites, the Vela 6 nuclear test detection satellites were part of a program run jointly by the Advanced Research Projects of the U.S. Department of Defense and the U.S. Atomic Energy Commission, managed by the U.S. Air Force. The twin spacecraft, Vela 6A and 6B, were launched on 8 April 1970. Data from the Vela 6 satellites were used to look for correlations between gamma-ray bursts and X-ray events. At least two good candidates were found, GB720514 and GB740723. The X-ray detectors failed on Vela 6B on 27 January 1972 and on Vela 6A on 12 March 1972.


Role in discovering gamma-ray bursts

On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known nuclear weapons signature.Schilling 2002, pp. 12–16 Uncertain what had happened but not considering the matter particularly urgent, the team at the Los Alamos Scientific Laboratory, led by Ray Klebesadel, filed the data away for investigation. As additional Vela satellites were launched with better instruments, the Los Alamos team continued to find inexplicable gamma-ray bursts in their data. By analyzing the different arrival times of the bursts as detected by different satellites, the team was able to determine rough estimates for the Star position, sky positions of sixteen bursts and definitively rule out a terrestrial or solar origin. Contrary to popular belief, the data was never classified. After thorough analysis, the findings were published in 1973 as an ''Astrophysical Journal'' article entitled "Observations of Gamma-Ray Bursts of Cosmic Origin". This alerted the astronomical community to the existence of Gamma-ray bursts (GRBs), now recognised as the most violent events in the universe.


Launches


See also

* Timeline of artificial satellites and space probes


References


External links

* * Includes material from NASA Goddard'
Remote Sensing Tutorial
* Orbits (the orbital elements are not updated, as no reliable tracking information is being provided for these satellites. The orbits in the following links may be based on data from older epoch (astronomy), epochs): {{DEFAULTSORT:Vela (Satellite) 1963 in spaceflight Reconnaissance satellites of the United States Nuclear weapons testing Military space program of the United States Gamma-ray bursts Satellite series Military equipment introduced in the 1960s Measurement and signature intelligence