Ultracold atom
   HOME

TheInfoList



OR:

Ultracold atoms are atoms that are maintained at temperatures close to 0
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phy ...
( absolute zero), typically below several tens of microkelvin (µK). At these temperatures the atom's quantum-mechanical properties become important. To reach such low temperatures, a combination of several techniques typically has to be used. First, atoms are usually trapped and pre-cooled via
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) a ...
in a
magneto-optical trap A magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially-varying magnetic field to create a trap which can produce samples of cold, trapped, neutral atoms. Temperatures achieved in a MOT can be as low as several micro ...
. To reach the lowest possible temperature, further cooling is performed using
evaporative cooling An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning s ...
in a magnetic or optical trap. Several Nobel prizes in physics are related to the development of the techniques to manipulate quantum properties of individual atoms (e.g. 1995-1997, 2001, 2005, 2012, 2017). Experiments with ultracold atoms study a variety of phenomena, including quantum phase transitions, Bose–Einstein condensation (BEC), bosonic superfluidity,
quantum magnetism A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin ...
, many-body spin dynamics, Efimov states, Bardeen–Cooper–Schrieffer (BCS) superfluidity and the BEC–BCS crossover. Some of these research directions utilize ultracold atom systems as quantum simulators to study the physics of other systems, including the unitary Fermi gas and the Ising and Hubbard models. Ultracold atoms could also be used for realization of quantum computers.


History

Samples of ultracold atoms are typically prepared through the interactions of a dilute gas with a laser field. Evidence for radiation pressure, force due to light on atoms, was demonstrated independently by Lebedev, and Nichols and Hull in 1901. In 1933, Otto Frisch demonstrated the deflection of individual sodium particles by light generated from a sodium lamp. The invention of the laser spurred the development of additional techniques to manipulate atoms with light. Using laser light to cool atoms was first proposed in 1975 by taking advantage of the Doppler effect to make the radiation force on an atom dependent on its velocity, a technique known as
Doppler cooling Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques. History Doppler cooling was si ...
. Similar ideas were also proposed to cool samples of trapped ions. Applying Doppler cooling in three dimensions will slow atoms to velocities that are typically a few cm/s and produce what is known as an
optical molasses Optical molasses is a laser cooling technique that can cool neutral atoms to temperatures lower than a magneto-optical trap (MOT). An optical molasses consists of 3 pairs of counter-propagating circularly polarized laser beams intersecting in the ...
. Typically, the source of neutral atoms for these experiments were thermal ovens which produced atoms at temperatures of a few hundred kelvins. The atoms from these oven sources are moving at hundred of meters per second. One of the major technical challenges in Doppler cooling was increasing the amount of time an atom can interact with the laser light. This challenge was overcome by the introduction of a Zeeman Slower. A Zeeman Slower uses a spatially varying magnetic field to maintain the relative energy spacing of the atomic transitions involved in Doppler cooling. This increases the amount of time the atom spends interacting with the laser light. The development of the first magneto-optical trap (MOT) by Raab et al. in 1987 was an important step towards the creation of samples of ultracold atoms. Typical temperatures achieved with a MOT are tens to hundreds of microkelvins. In essence, a magneto optical trap confines atoms in space by applying a magnetic field so that lasers not only provide a velocity dependent force but also a spatially varying force. The 1997 Nobel prize in physics was awarded for development of methods to cool and trap atoms with laser light and was shared by Steven Chu,
Claude Cohen-Tannoudji Claude Cohen-Tannoudji (; born 1 April 1933) is a French physicist. He shared the 1997 Nobel Prize in Physics with Steven Chu and William Daniel Phillips for research in methods of laser cooling and trapping atoms. Currently he is still an activ ...
and William D. Phillips.
Evaporative cooling An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning s ...
was used in experimental efforts to reach lower temperatures in an effort to discover a new
state of matter In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, ...
predicted by Satyendra Nath Bose and Albert Einstein known as a
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
(BEC). In evaporative cooling, the hottest atoms in a sample are allowed to escape which reduces the average temperature of the sample. The Nobel Prize in 2001 was awarded to Eric A. Cornell,
Wolfgang Ketterle Wolfgang Ketterle (; born 21 October 1957) is a German physicist and professor of physics at the Massachusetts Institute of Technology (MIT). His research has focused on experiments that trap and cool atoms to temperatures close to absolute ze ...
and Carl E. Wieman for the achievement of
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates.


Applications

Ultracold atoms have a variety of applications owing to their unique quantum properties and the great experimental control available in such systems. For instance, ultracold atoms have been proposed as a platform for quantum computation and quantum simulation, accompanied by very active experimental research to achieve these goals. Quantum simulation is of great interest in the context of condensed matter physics, where it may provide valuable insights into the properties of interacting quantum systems. The ultracold atoms are used to implement an analogue of the condensed matter system of interest, which can then be explored using the tools available in the particular implementation. Since these tools may differ greatly from those available in the actual condensed matter system, one can thus experimentally probe otherwise inaccessible quantities. Furthermore, ultracold atoms may even allow to create exotic states of matter, which cannot otherwise be observed in nature. Ultracold atoms are also used in experiments for precision measurements enabled by the low thermal noise and, in some cases, by exploiting quantum mechanics to exceed the standard quantum limit. In addition to potential technical applications, such precision measurements may serve as tests of our current understanding of physics.


See also

*
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
* Cold Atom Laboratory *
Quantum simulator Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Note: This manuscript is a contribution ...


References


Sources

* * {{DEFAULTSORT:Ultracold Atom Quantum mechanics Thermodynamics Atomic physics he:אטומים קרים