Tube sound
   HOME

TheInfoList



OR:

Tube sound (or valve sound) is the characteristic
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
associated with a
vacuum tube amplifier A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by so ...
(valve amplifier in British English), a
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
-based
audio amplifier An audio power amplifier (or power amp) is an electronic amplifier that amplifies low-power electronic audio signals, such as the signal from a radio receiver or an electric guitar pickup, to a level that is high enough for driving loudspea ...
. At first, the concept of ''tube sound'' did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to
crossover distortion Crossover distortion is a type of distortion which is caused by switching between devices driving a load. It is most commonly seen in complementary, or "push-pull", Class-B amplifier stages, although it is occasionally seen in other types of circui ...
in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts. (also found in ) Many
electric guitar An electric guitar is a guitar that requires external amplification in order to be heard at typical performance volumes, unlike a standard acoustic guitar (however combinations of the two - a semi-acoustic guitar and an electric acoustic gu ...
,
electric bass The bass guitar, electric bass or simply bass (), is the lowest-pitched member of the string family. It is a plucked string instrument similar in appearance and construction to an electric or an acoustic guitar, but with a longer neck and s ...
, and keyboard players in several genres also prefer the sound of tube
instrument amplifier An instrument amplifier is an electronic device that converts the often barely audible or purely electronic signal of a musical instrument into a larger electronic signal to feed to a loudspeaker. An instrument amplifier is used with musical ins ...
s or preamplifiers. Tube amplifiers are also preferred by some listeners for stereo systems.


History

Before the commercial introduction of
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s in the 1950s, electronic amplifiers used vacuum tubes (known in the United Kingdom as "valves"). By the 1960s, solid state (transistorized) amplification had become more common because of its smaller size, lighter weight, lower heat production, and improved reliability. Tube amplifiers have retained a loyal following amongst some audiophiles and musicians. Some tube designs command very high prices, and tube amplifiers have been going through a revival since Chinese and Russian markets have opened to global trade—tube production never went out of vogue in these countries. Many transistor-based audio power amplifiers use
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
(metal-oxide-semiconductor field-effect transistor) devices in their power sections, because their
distortion In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signa ...
curve is more tube-like.


Musical instrument amplification

Some musicians prefer the
distortion In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signa ...
characteristics of tubes over transistors for electric guitar, bass, and other instrument amplifiers. In this case, generating deliberate (and in the case of electric guitars often considerable) audible
distortion In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signa ...
or ''overdrive'' is usually the goal. The term can also be used to describe the sound created by specially-designed transistor amplifiers or
digital Digital usually refers to something using discrete digits, often binary digits. Technology and computing Hardware *Digital electronics, electronic circuits which operate using digital signals ** Digital camera, which captures and stores digital ...
modeling devices that try to closely emulate the characteristics of the tube sound. The tube sound is often subjectively described as having a "warmth" and "richness", but the source of this is by no means agreed on. Possible explanations mention non-linear clipping, or the higher levels of second-order harmonic distortion in single-ended designs, resulting from the tube interacting with the
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
of the output transformer.


Audible differences

The sound of a tube amplifier is partially a function of the circuit topologies typically used with tubes vis-à-vis the topologies typically used with transistors as much as the gain devices themselves. Beyond circuit design, there are other differences, such as the differing electronic characteristics of
triode A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
,
tetrode A tetrode is a vacuum tube (called ''valve'' in British English) having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate (called ''anode'' in British English). ...
, and
pentode A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode (called a ''trip ...
vacuum tubes, along with their solid-state counterparts such as bipolar transistor, FET,
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
,
IGBT An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily used as an electronic switch, which, as it was developed, came to combine high efficiency and fast switching. It consists of four alternating lay ...
, etc. These can be further divided into differences among various models of the said device type (e.g. EL34 vis-à-vis 6L6 tetrodes). In many cases circuit topologies need to account for these differences to either homogenize their widely varying characteristics or to establish a certain operating point required by the device. The low frequency roll-off can be explained by many tube amplifiers having high output impedance compared to transistor designs. The roll-off is due to higher device impedance and reduced feedback margins (more feedback results in lower output impedance). Some tube amplifier designs use minimal feedback while others use quite a bit more of it. How much feedback is optimal for tube amplifiers remains a matter of debate.


Harmonic content and distortion

Triodes (and
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
s) produce a monotonically decaying harmonic distortion spectrum. Even-order harmonics and odd-order harmonics are both
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
multiples of the input frequency. A psychoacoustic analysis tells us that high-order harmonics are more offensive than low. For this reason, distortion measurements should weight audible high-order harmonics more than low. The importance of high-order harmonics suggests that distortion should be regarded in terms of the complete series or of the composite wave-form that this series represents. It has been shown that weighting the harmonics by the square of the order correlates well with subjective listening tests. Weighting the distortion wave-form proportionally to the square of the frequency gives a measure of the reciprocal of the radius of curvature of the wave-form, and is therefore related to the sharpness of any corners on it. Based on said discovery, highly sophisticated methods of weighting of distortion harmonics have been developed. Since they concentrate in the origins of the distortion, they are mostly useful for the engineers who develop and design audio amplifiers, but on the other hand they may be difficult to use for the reviewers who only measure the output. A huge issue is that measurements of objective nature (for example, those indicating magnitude of scientifically quantifiable variables such as current, voltage, power, THD, dB, and so on) fail to address subjective preferences. Especially in case of designing or reviewing instrument amplifiers this is a considerable issue because design goals of such differ widely from design goals of likes of HiFi amplifiers. HiFi design largely concentrates on improving performance of objectively measurable variables. Instrument amplifier design largely concentrates on subjective issues, such as "pleasantness" of certain type of tone. Fine examples are cases of distortion or frequency response: HiFi design tries to minimize distortion and focuses on eliminating "offensive" harmonics. It also aims for ideally flat response. Musical instrument amplifier design deliberately introduces distortion and great non-linearities in frequency response. Former "offensiveness" of certain types of harmonics becomes a highly subjective topic, along with preferences towards certain types of frequency responses (whether flat or un-flat). Push–pull amplifiers use two nominally identical gain devices in tandem. One consequence of this is that all even-order harmonic products cancel, allowing only odd-order distortion. This is because a push–pull amplifier has a symmetric ( odd symmetry)
transfer characteristic In engineering, a transfer function (also known as system function or network function) of a system, sub-system, or component is a mathematical function that theoretically models the system's output for each possible input. They are widely used ...
. Power amplifiers are of the push-pull type to avoid the inefficiency of Class A amplifiers. A single-ended amplifier will generally produce even as well as odd harmonics.Ask the Doctors: Tube vs. Solid-State Harmonics
€”Universal Audio Webzine

€”Electronic Engineering Times
A particularly famous research about "tube sound" compared a selection of single-ended tube microphone preamplifiers to a selection of push-pull transistorized microphone preamplifiers. The difference in harmonic patterns of these two topologies has henceforth been often incorrectly attributed as difference of tube and solid-state devices (or even the amplifier class). Push–pull tube amplifiers can be run in class A (rarely), AB, or B. Also, a
class-B amplifier In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The classes are related to the time period that the active ...
may have crossover distortion that will be typically high order and thus sonically very undesirable indeed. The distortion content of class-A circuits (SE or PP) typically monotonically reduces as the signal level is reduced, asymptotic to zero during quiet passages of music. For this reason class-A amplifiers are especially desired for classical and acoustic music since the distortion ''relative to signal'' decreases as the music gets quieter. Class-A amplifiers measure best at low power. Class-AB and B amplifiers measure best just below max rated power. Loudspeakers present a reactive load to an amplifier (
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
,
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
and resistance). This impedance may vary in value with signal frequency and amplitude. This variable loading affects the amplifier's performance both because the amplifier has nonzero output impedance (it cannot keep its output voltage perfectly constant when the speaker load varies) and because the phase of the speaker load can change the stability margin of the amplifier. The influence of the speaker impedance is different between tube amplifiers and transistor amplifiers. The reason is that tube amplifiers normally use output transformers, and cannot use much negative feedback due to phase problems in transformer circuits. Notable exceptions are various "OTL" (output-transformerless) tube amplifiers, pioneered by Julius Futterman in the 1950s, or somewhat rarer tube amplifiers that replace the impedance matching transformer with additional (often, though not necessarily, transistorized) circuitry in order to eliminate parasitics and musically unrelated magnetic distortions. In addition to that, many solid-state amplifiers, designed specifically to amplify electric instruments such as guitars or bass guitars, employ current feedback circuitry. This circuitry increases the amplifier's output impedance, resulting in response similar to that of tube amplifiers. The design of speaker crossover networks and other electro-mechanical properties may result in a speaker with a very uneven impedance curve, for a nominal 8 Î© speaker, being as low as 6 Î© at some places and as high as 30–50 Î© elsewhere in the curve. An amplifier with little or no negative feedback will always perform poorly when faced with a speaker where little attention was paid to the impedance curve.


Design comparison

There has been considerable debate over the characteristics of tubes versus
bipolar junction transistor A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipola ...
s. Triodes and
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
s have certain similarities in their transfer characteristics. Later forms of the tube, the
tetrode A tetrode is a vacuum tube (called ''valve'' in British English) having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate (called ''anode'' in British English). ...
and
pentode A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode (called a ''trip ...
, have quite different characteristics that are in some ways similar to the bipolar transistor. Yet MOSFET amplifier circuits typically do not reproduce tube sound any more than typical bipolar designs. The reason is ''circuit differences'' between a typical tube design and a typical MOSFET design.


Input impedance

A characteristic feature of most tube amplifier designs is the high input impedance (typically 100  kΩ or more) in modern designs and as much as 1 MΩ in classic designs. The input impedance of the amplifier is a load for the source device. Even for some modern music reproduction devices the recommended load impedance is over 50 kΩ. This implies that the input of an average tube amplifier is a problem-free load for music signal sources. By contrast, some transistor amplifiers for home use have lower input impedances, as low as 15 kΩ. Since it is possible to use high output impedance devices due to the high input impedance, other factors may need to be accounted for, such as cable capacitance and microphonics.


Output impedance

Loudspeakers usually load audio amplifiers. In audio history, nearly all loudspeakers have been electrodynamic loudspeakers. There exists also a minority of electrostatic loudspeakers and some other more exotic loudspeakers. Electrodynamic loudspeakers transform electric current to force and force to acceleration of the diaphragm which causes sound pressure. Due to the principle of an electrodynamic speaker, most loudspeaker drivers ought to be driven by an electric current signal. The current signal drives the electrodynamic speaker more accurately, causing less distortion than a voltage signal. In an ideal current or transconductance amplifier the output impedance approaches infinity. Practically all commercial audio amplifiers are voltage amplifiers. Their output impedances have been intentionally developed to approach zero. Due to the nature of vacuum tubes and audio transformers, the output impedance of an average tube amplifier is usually considerably higher than the modern audio amplifiers produced completely without vacuum tubes or audio transformers. Most tube amplifiers with their higher output impedance are less ideal voltage amplifiers than the solid state voltage amplifiers with their smaller output impedance.


Soft clipping

Soft clipping is a very important aspect of tube sound especially for
guitar amplifier A guitar amplifier (or amp) is an electronic device or system that strengthens the electrical signal from a pickup on an electric guitar, bass guitar, or acoustic guitar so that it can produce sound through one or more loudspeakers, which ar ...
s. A hi-fi amplifier should not normally ever be driven into clipping. The
harmonics A harmonic is a wave with a frequency that is a positive integer multiple of the '' fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', ...
added to the signal are of lower energy with soft clipping than hard clipping. However, soft clipping is not exclusive to tubes. It can be simulated in transistor circuits (below the point that real hard clipping would occur). (See "Intentional distortion" section.) Large amounts of global negative feedback are not available in tube circuits, due to phase shift in the output transformer, and lack of sufficient gain without large numbers of tubes. With lower feedback, distortion is higher and predominantly of low order. The onset of clipping is also gradual. Large amounts of feedback, allowed by transformerless circuits with many active devices, leads to numerically lower distortion but with more high harmonics, and harder transition to clipping. As input increases, the feedback uses the extra gain to ensure that the output follows it accurately until the amplifier has no more gain to give and the output saturates. However, phase shift is largely an issue only with global feedback loops. Design architectures with local feedback can be used to compensate the lack of global negative feedback magnitude. Design "selectivism" is again a trend to observe: designers of sound producing devices may find the lack of feedback and resulting higher distortion beneficial, designers of sound reproducing devices with low distortion have often employed local feedback loops. Soft clipping is also not a product of lack of feedback alone: Tubes have different characteristic curves. Factors such as bias affect the load line and clipping characteristics. Fixed and cathode-biased amplifiers behave and clip differently under overdrive. The type of phase inverter circuitry can also affect greatly on softness (or lack of it) of clipping: long-tailed pair circuit, for example, has softer transition to clipping than a cathodyne. The coupling of the phase inverter and power tubes is also important, since certain types of coupling arrangements (e.g. transformer coupling) can drive power tubes to class AB2, while some other types can't. In the recording industry and especially with microphone amplifiers it has been shown that amplifiers are often overloaded by signal transients. Russell O. Hamm, an engineer working for
Walter Sear Walter Edmond Sear (27 April 1930 – 29 April 2010) was an American recording engineer, musician, instrument importer and designer, inventor, composer and film producer. He was considered a pioneer in the use of the synthesizer and an expert on ...
at Sear Sound Studios, wrote in 1973 that there is a major difference between the harmonic distortion components of a signal with greater than 10% distortion that had been amplified with three methods: tubes, transistors, or operational amplifiers. Mastering engineer R. Steven Mintz wrote a rebuttal to Hamm's paper, saying that the circuit design was of paramount importance, more than tubes vs. solid state components. Hamm's paper was also countered by Dwight O. Monteith Jr and Richard R. Flowers in their article "Transistors Sound Better Than Tubes", which presented transistor mic preamplifier design that actually reacted to transient overloading similarly as the limited selection of tube preamplifiers tested by Hamm. Monteith and Flowers said: "In conclusion, the high voltage transistor preamplifier presented here supports the viewpoint of Mintz: 'In the field analysis, the characteristics of a typical system using transistors depends on the design, as is the case in tube circuits. A particular 'sound' may be incurred or avoided at the designer's pleasure no matter what active devices he uses.'" In other words, soft clipping is not exclusive to vacuum tubes or even an inherent property of them. In practice the clipping characteristics are largely dictated by the entire circuitry and as so they can range from very soft to very hard, depending on circuitry. Same applies to both vacuum tube and solid-state -based circuitry. For example, solid-state circuitry such as operational transconductance amplifiers operated open loop, or MOSFET cascades of CMOS inverters, are frequently used in commercial applications to generate softer clipping than what is provided by generic triode gain stages. In fact, the generic triode gain stages can be observed to clip rather "hard" if their output is scrutinized with an oscilloscope.


Bandwidth

Early tube amplifiers often had limited response bandwidth, in part due to the characteristics of the inexpensive
passive components Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use ''passivity'' to refer to incrementally passive components and systems, which are incapable of p ...
then available. In power amplifiers most limitations come from the output transformer; low frequencies are limited by primary inductance and high frequencies by leakage inductance and capacitance. Another limitation is in the combination of high output impedance, decoupling capacitor and grid resistor, which acts as a
high-pass filter A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The amount of attenuation for each frequency ...
. If interconnections are made from long cables (for example guitar to amp input), a high source impedance with high cable capacitance will act as a
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
. Modern premium components make it easy to produce amplifiers that are essentially flat over the audio band, with less than 3 dB attenuation at 6 Hz and 70 kHz, well outside the audible range.


Negative feedback

Typical (non-OTL) tube power amplifiers could not use as much
negative feedback Negative feedback (or balancing feedback) occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by othe ...
(NFB) as transistor amplifiers due to the large phase shifts caused by the output transformers and their lower stage gains. While the absence of NFB greatly increases harmonic distortion, it avoids instability, as well as slew rate and bandwidth limitations imposed by dominant-pole compensation in transistor amplifiers. However, the effects of using low feedback principally apply only to circuits where significant phase shifts are an issue (e.g. power amplifiers). In preamplifier stages, high amounts of negative feedback can easily be employed. Such designs are commonly found from many tube-based applications aiming to higher fidelity. On the other hand, the dominant pole compensation in transistor amplifiers is precisely controlled: exactly as much of it can be applied as needed to strike a good compromise for the given application. The effect of dominant pole compensation is that gain is reduced at higher frequencies. There is increasingly less NFB at high frequencies due to the reduced loop gain. In audio amplifiers, the bandwidth limitations introduced by compensation are still far beyond the audio frequency range, and the slew rate limitations can be configured such that full amplitude 20 kHz signal can be reproduced without the signal encountering slew rate distortion, which is not even necessary for reproducing actual audio material.


Power supplies

Early tube amplifiers had power supplies based on rectifier tubes. These supplies were unregulated, a practice which continues to this day in transistor amplifier designs. The typical
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ...
supply was a
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
, perhaps half-wave, a choke (
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
) and a filter capacitor. When the tube amplifier was operated at high volume, due to the high impedance of the rectifier tubes, the power supply voltage would dip as the amplifier drew more current (assuming class AB), reducing power output and causing signal modulation. The dipping effect is known as "sag." Sag may be desirable effect for some electric guitarists when compared with hard clipping. As the amplifier load or output increases this voltage drop will increase distortion of the output signal. Sometimes this sag effect is desirable for guitar amplification. Some instrument tube amplifier designs use a vacuum tube
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
instead of silicon diodes, and some designs offer the choice of both rectifiers via a switch. Such an amplifier was introduced in 1989 by Mesa/Boogie, called "Dual Rectifier", and the rectifier switching is the subject of a patent. With added resistance in series with the high-voltage supply, silicon rectifiers can emulate the voltage sag of a tube rectifier. The resistance can be switched in when required. Electric guitar amplifiers often use a class-AB1 amplifier. In a class-A stage the average current drawn from the supply is constant with signal level, consequently it does not cause supply line sag until the clipping point is reached. Other audible effects due to using a tube
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
with this amplifier class are unlikely. Unlike their solid-state equivalents, tube rectifiers require time to warm up before they can supply B+/HT voltages. This delay can protect rectifier-supplied vacuum tubes from cathode damage due to application of B+/HT voltages before the tubes have reached their correct operating temperature by the tube's built-in heater.


Class A

The benefit of all
class-A amplifier In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The classes are related to the time period that the active ...
s is the absence of
crossover distortion Crossover distortion is a type of distortion which is caused by switching between devices driving a load. It is most commonly seen in complementary, or "push-pull", Class-B amplifier stages, although it is occasionally seen in other types of circui ...
. This crossover distortion was found especially annoying after the first silicon-transistor class-B and class-AB transistor amplifiers arrived on the consumer market. Earlier germanium-based designs with the much lower turn-on voltage of this technology and the non-linear response curves of the devices had not shown large amounts of cross-over distortion. Although crossover distortion is very fatiguing to the ear and perceptible in listening tests, it is also almost invisible (until looked for) in the traditional
Total harmonic distortion The total harmonic distortion (THD or THDi) is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion fact ...
(THD) measurements of that epoch. It should be pointed out that this reference is somewhat ironic given its publication date of 1952. As such, it most certainly refers to "ear fatigue" distortion commonly found in existing tube-type designs; the world's first prototype transistorized hi-fi amplifier did not appear until 1955.


Push–pull amplifiers

A class-A push–pull amplifier produces low distortion for any given level of applied
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
, and also cancels the
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
in the
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
cores, so this topology is often seen by HIFI-audio enthusiasts and do-it-yourself builders as the ultimate engineering approach to the tube Hi-fi amplifier for use with normal speakers. Output power of as high as 15 watts can be achieved even with classic tubes such as the 2A3 or 18 watts from the type 45. Classic pentodes such as the EL34 and KT88 can output as much as 60 and 100 watts respectively. Special types such as the V1505 can be used in designs rated at up to 1100 watts. See "An Approach to Audio Frequency Amplifier Design", a collection of reference designs originally published by G.E.C.


Single-ended triode (SET) amplifiers

SET amplifiers show poor measurements for distortion with a resistive load, have low output power, are inefficient, have poor damping factors and high measured harmonic distortion. But they perform somewhat better in dynamic and impulse response. The triode, despite being the oldest signal amplification device, also can (depending on the device in question) have a more linear no-feedback transfer characteristic than more advanced devices such as beam tetrodes and pentodes. All amplifiers, regardless of class, components, or topology, have some measure of distortion. This mainly
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', t ...
distortion is a unique pattern of simple and monotonically decaying series of harmonics, dominated by modest levels of second harmonic. The result is like adding the same tone one
octave In music, an octave ( la, octavus: eighth) or perfect octave (sometimes called the diapason) is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been refer ...
higher in the case of second-order harmonics, and one octave plus one fifth higher for third-order harmonics. The added harmonic tone is lower in amplitude, at about 1–5% or less in a no feedback amp at full power and rapidly decreasing at lower output levels. Hypothetically, a single-ended power amplifier's second harmonic distortion might reduce similar harmonic distortion in a single driver loudspeaker, if their harmonic distortions were equal and amplifier was connected to the speaker so that the distortions would neutralize each other. SETs usually only produce about 2 
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kgâ‹…m2â‹…s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
(W) for a 2A3 tube amp to 8 W for a 300B up to the practical maximum of 40 W for an 805 tube amp. The resulting
sound pressure level Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydropho ...
depends on the sensitivity of the loudspeaker and the size and acoustics of the room as well as amplifier power output. Their low power also makes them ideal for use as preamps. SET amps have a power consumption of a minimum of 8 times the stated stereo power. For example, a 10 W stereo SET uses a minimum of 80 W, and typically 100 W.


Single-ended pentode and tetrode amplifiers

The special feature among tetrodes and pentodes is the possibility to obtain ultra-linear or distributed load operation with an appropriate output transformer. In practice, in addition to loading the plate terminal, distributed loading (of which ultra linear circuit is a specific form) distributes the load also to cathode and screen terminals of the tube. An Ultra-linear connection and distributed loading are both in essence negative feedback methods, which enable less harmonic distortion along with other characteristics associated with negative feedback. Ultra-linear topology has mostly been associated with amplifier circuits based on research by D. Hafler and H. Keroes of Dynaco fame. Distributed loading (in general and in various forms) has been employed by the likes of McIntosh and Audio Research.


Class AB

The majority of modern commercial Hi-fi amplifier designs have until recently used
class-AB In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The classes are related to the time period that the active ...
topology (with more or less pure low-level class-A capability depending on the standing bias current used), in order to deliver greater power and
efficiency Efficiency is the often measurable ability to avoid wasting materials, energy, efforts, money, and time in doing something or in producing a desired result. In a more general sense, it is the ability to do things well, successfully, and without ...
, typically 12–25 watts and higher. Contemporary designs normally include at least some
negative feedback Negative feedback (or balancing feedback) occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by othe ...
. However, class-D topology (which is vastly more efficient than class B) is more and more frequently applied where traditional design would use class AB because of its advantages in both weight and efficiency. Class-AB push–pull topology is nearly universally used in tube amps for electric guitar applications that produce power of more than about 10 watts.


Intentional distortion


Tube sound from transistor amplifiers

Some individual characteristics of the tube sound, such as the waveshaping on overdrive, are straightforward to produce in a transistor circuit or
digital filter In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, t ...
. For more complete simulations, engineers have been successful in developing transistor amplifiers that produce a sound quality very similar to the tube sound. Usually this involves using a circuit topology similar to that used in tube amplifiers. More recently, a researcher has introduced the asymmetric cycle harmonic injection (ACHI) method to emulate tube sound with transistors. Using modern
passive component Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use ''passivity'' to refer to incrementally passive components and systems, which are incapable of Ga ...
s, and modern sources, whether digital or analogue, and wide band
loudspeaker A loudspeaker (commonly referred to as a speaker or speaker driver) is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A ''speaker system'', also often simply referred to as a "speaker" or ...
s, it is possible to have tube amplifiers with the characteristic wide bandwidth of modern transistor amplifiers, including using push–pull circuits, class AB, and feedback. Some enthusiasts, such as Nelson Pass, have built amplifiers using transistors and MOSFETs that operate in class A, including single ended, and these often have the "tube sound."


Hybrid amplifiers

Tubes are often used to impart characteristics that many people find audibly pleasant to solid state amplifiers, such as
Musical Fidelity Musical Fidelity is a British producer of high-end audio equipment focusing on streaming music players, and its core product range of amplifiers of various types (power, phono, headphone, integrated and pre-amplifiers). Other products have incl ...
's use of
Nuvistor The nuvistor is a type of vacuum tube announced by RCA in 1959. Nuvistors were made to compete with the then-new bipolar junction transistors, and were much smaller than conventional tubes of the day, almost approaching the compactness of e ...
s, tiny triode tubes, to control large bi-polar transistors in their NuVista 300 power amp. In America, Moscode and Studio Electric use this method, but use MOSFET transistors for power, rather than bi-polar. Pathos, an Italian company, has developed an entire line of hybrid amplifiers. To demonstrate one aspect of this effect, one may use a light bulb in the feedback loop of an infinite gain multiple feedback (IGMF) circuit. The slow response of the light bulb's resistance (which varies according to temperature) can thus be used to moderate the sound and attain a tube-like "soft limiting" of the output, though other aspects of the "tube sound" would not be duplicated in this exercise.


See also

* Audio system measurements *
Boutique amplifier Boutique amplifier is a catch-all descriptor for any type of instrument amplifier that is typically hand built with the intention of being much better than the mass-produced variety offered by large companies. In the majority of cases, this is re ...
* British Valve Association * Virtual Valve Amplifier


Notes


References

* Barbour, Eric
The Cool Sound of Tubes
in ''IEEE Spectrum Online''. * Hamm, Russell O. (September 14, 1972)
"Tubes vs. Transistors: Is There An Audible Difference?"
Presented at the 43rd convention of the
Audio Engineering Society The Audio Engineering Society (AES) is a professional body for engineers, scientists, other individuals with an interest or involvement in the professional audio industry. The membership largely comprises engineers developing devices or product ...
, New York. * Reisch, George
Scientists vs Audiophiles 1999
in '' Stereophile'', March, 1999.
Tube Data Archive
- Massive collection (many gigabytes) of scanned original tube data sheets and technical information. {{DEFAULTSORT:Tube Sound Valve amplifiers Vacuum tubes Audio amplifiers Audio engineering