Transmetalation
   HOME

TheInfoList



OR:

Transmetalation (alt. spelling: transmetallation) is a type of
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and s ...
reaction that involves the transfer of
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
s from one metal to another. It has the general form: :M1–R + M2–R′ → M1–R′ + M2–R where R and R′ can be, but are not limited to, an
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl is derived from a cycloa ...
,
aryl In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used ...
, alkynyl,
allyl In organic chemistry, an allyl group is a substituent with the structural formula , where R is the rest of the molecule. It consists of a methylene bridge () attached to a vinyl group (). The name is derived from the scientific name for garlic, ...
,
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this grou ...
, or
pseudohalogen Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic ...
group. The reaction is usually an
irreversible process In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature (e.g. melting of ...
due to
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ...
and kinetic reasons. Thermodynamics will favor the reaction based on the
electronegativities Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
of the metals and
kinetics Kinetics ( grc, κίνησις, , kinesis, ''movement'' or ''to move'') may refer to: Science and medicine * Kinetics (physics), the study of motion and its causes ** Rigid body kinetics, the study of the motion of rigid bodies * Chemical kin ...
will favor the reaction if there are empty orbitals on both metals. There are different types of transmetalation including redox-transmetalation and redox-transmetalation/ligand exchange. During transmetalation the metal-carbon bond is activated, leading to the formation of new metal-carbon bonds. Transmetalation is commonly used in
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
, synthesis of
main group In chemistry and atomic physics, the main group is the group of elements (sometimes called the representative elements) whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as ...
complexes, and synthesis of
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
complexes.


Types of transmetalation

There are two main types of transmetalation, redox-transmetalation (RT) and redox-transmetalation/ligand-exchange (RTLE). Below, M1 is usually a 4d or 5d transition metal and M2 is usually a main group or 3d transition metal. By looking at the electronegativities of the metals and ligands, one can predict whether the RT or RTLE reaction will proceed and what products the reaction will yield. For example, one can predict that the addition of 3 HgPh2 to 2 Al will yield 3 Hg and 2 AlPh3 because Hg is a more electronegative element than Al.


Redox-transmetalation

: M1''n''+–R + M2 → M1 + M2''n''+–R. In
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
-transmetalation a ligand is transferred from one metal to the other through an intermolecular mechanism. During the reaction one of the metal centers is oxidized and the other is reduced. The electronegativities of the metals and ligands is what causes the reaction to go forward. If M1 is more electronegative than M2, it is thermodynamically favorable for the R group to coordinate to the less electronegative M2.


Redox-transmetalation/ligand-exchange

: M1–R + M2–X → M1–X + M2–R. In redox-transmetalation/ligand exchange the ligands of two metal complexes switch places with each other, bonding with the other metal center. The R ligand can be an alkyl, aryl, alkynyl, or allyl group and the X ligand can be a halogen, pseudo-halogen, alkyl, or aryl group. The reaction can proceed by two possible intermediate steps. The first is an associative intermediate, where the R and X ligands
bridge A bridge is a structure built to span a physical obstacle (such as a body of water, valley, road, or rail) without blocking the way underneath. It is constructed for the purpose of providing passage over the obstacle, which is usually someth ...
the two metals, stabilizing the
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
. The second and less common intermediate is the formation of a cation where R is bridging the two metals and X is anionic. The RTLE reaction proceeds in a concerted manner. Like in RT reactions, the reaction is driven by electronegativity values. The X ligand is attracted to highly electropositive metals. If M1 is a more electropositive metal than M2, it is thermodynamically favorable for the exchange of the R and X ligands to occur.


Applications


Cross-coupling reactions

Transmetalation is often used as a step in the catalytic cycles of
cross-coupling In organic chemistry, a cross-coupling reaction is a reaction where two fragments are joined together with the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M (R = organic fragment, M = ...
reactions. Some of the cross-coupling reactions that include a transmetalation step are Stille cross-coupling,
Suzuki cross-coupling The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, a ...
, Sonogashira cross-coupling, and Negishi cross-coupling. The most useful cross-coupling catalysts tend to be ones that contain palladium. Cross-coupling reactions have the general form of R′–X + M–R → R′–R + M–X and are used to form C–C bonds. R and R′ can be any carbon fragment. The identity of the metal, M, depends on which cross-coupling reaction is being used. Stille reactions use tin, Suzuki reactions use boron, Sonogashira reactions use copper, and Negishi reactions use zinc. The transmetalation step in palladium catalyzed reactions involve the addition of an R–M compound to produce an R′–Pd–R compound. Cross-coupling reactions have a wide range of applications in synthetic chemistry including the area of medicinal chemistry. The Stille reaction has been used to make an antitumor agent, (±)-''epi''-jatrophone; the Suzuki reaction has been used to make an
antitumor Cancer can be treated by surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy (including immunotherapy such as monoclonal antibody therapy) and synthetic lethality, most commonly as a series of separate treatments ...
agent, oximidine II; the Sonogashira reaction has been used to make an anticancer drug, eniluracil; and the Negishi reaction has been used to make the carotenoid β-carotene via a transmetalation cascade. :


Lanthanides

Lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
organometallic complexes have been synthesized by RT and RTLE. Lanthanides are very electropositive elements. Organomercurials, such as HgPh2, are common kinetically inert RT and RTLE reagents that allow functionalized derivatives to be synthesized, unlike organolithiums and
Grignard reagent A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromide . ...
s. Diarylmercurials are often used to synthesize lanthanide organometallic complexes. Hg(C6F5)2 is a better RT reagent to use with lanthanides than HgPh2 because it does not require a step to activate the metal. However, phenyl-substituted lanthanide complexes are more thermally stable than the pentafluorophenyl complexes. The use of HgPh2 led to the synthesis of a ytterbium complex with different
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s on the two Yb atoms: :Yb(C10H8)(THF)2 + HgPh2 → YbIIYbIIIPh5(THF)4 In the Ln(C6F5)2 complexes, where Ln = Yb, Eu, or Sm, the Ln–C bonds are very reactive, making them useful in RTLE reactions. Protic substrates have been used as a reactant with the Ln(C6F5)2 complex as shown: Ln(C6F5)2 + 2LH → Ln(L)2 + 2C6F5H. It is possible to avoid the challenges of working with the unstable Ln(C6F5)2 complex by forming it in situ by the following reaction: :Ln + HgR2 + 2 LH → Ln(L)2 + Hg + 2 RH Organotins are also kinetically inert RT and RTLE reagents that have been used in a variety of organometallic reactions. They have applications to the synthesis of lanthanide complexes, such as in the following reaction: :Yb + Sn(N(SiMe3)2)2 → Yb(N(SiMe3)2)2 + Sn


Actinides

RT can be used to synthesize
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
complexes. RT has been used to synthesize uranium halides using uranium metal and mercury halides as shown: :U + HgX → UX + Hg (X = Cl, Br, I) This actinide RT reaction can be done with multiple mercury compounds to coordinate ligands other than halogens to the metal: :2 U + 3 (C5H5)2Hg + HgCl2 → 2 (C5H5)3UCl + 4 Hg


Alkaline earth metals

Alkaline earth metal complexes have been synthesized by RTLE, employing the same methodology used in synthesizing lanthanide complexes. The use of diphenylmercury in alkaline-earth metal reactions leads to the production of elemental mercury. The handling and disposal of elemental mercury is challenging due to its toxicity to humans and the environment. This led to the desire for an alternative RTLE reagent that would be less toxic and still very effective. Triphenylbismuth, BiPh3, was discovered to be a suitable alternative. Mercury and bismuth have similar electronegativity values and behave similarly in RTLE reactions. BiPh3 has been used to synthesize alkaline-earth metal
amide In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula , where R, R', and R″ represent organic groups or hydrogen atoms. The amide group is called a peptide bond when it i ...
s and alkaline-earth metal cyclopentadienides. The difference between HgPh2 and BiPh3 in these syntheses was that the reaction time was longer when using BiPh3.


References

{{Organometallics Organometallic chemistry Reaction mechanisms