Topic outline of mathematics
   HOME

TheInfoList



OR:

Mathematics is a field of study that investigates topics such as
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
,
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
, structure, and change.


Philosophy


Nature

*
Definitions of mathematics Mathematics has no generally accepted definition. Different schools of thought, particularly in philosophy, have put forth radically different definitions. All proposed definitions are controversial in their own ways. Early definitions Pythag ...
– Mathematics has no generally accepted definition. Different schools of thought, particularly in philosophy, have put forth radically different definitions, all of which are controversial. *
Language of mathematics The language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc) with ...
is the system used by
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
s to communicate
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
ideas among themselves, and is distinct from natural languages in that it aims to communicate abstract, logical ideas with precision and unambiguity. *
Philosophy of mathematics The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in peop ...
– its aim is to provide an account of the nature and methodology of mathematics and to understand the place of mathematics in people's lives. :* Classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premise ...
and ZFC set theory. :*
Constructive mathematics In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove th ...
asserts that it is necessary to find (or "construct") a mathematical object to prove that it exists. In classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. :*
Predicative mathematics In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more com ...


Mathematics is

* An
academic discipline An academy (Attic Greek: Ἀκαδήμεια; Koine Greek Ἀκαδημία) is an institution of secondary or tertiary higher learning (and generally also research or honorary membership). The name traces back to Plato's school of philosophy, ...
– branch of knowledge that is taught at all levels of education and researched typically at the college or university level. Disciplines are defined (in part), and recognized by the academic journals in which research is published, and the learned societies and academic departments or faculties to which their practitioners belong. * A
formal science Formal science is a branch of science studying disciplines concerned with abstract structures described by formal systems, such as logic, mathematics, statistics, theoretical computer science, artificial intelligence, information theory, game t ...
– branch of knowledge concerned with the properties of formal systems based on definitions and rules of inference. Unlike other sciences, the formal sciences are not concerned with the validity of theories based on observations in the physical world.


Concepts

*
Mathematical object A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical p ...
an
abstract concept Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs. They play an important role in all aspects of cognition. As such, concepts are studied by s ...
in mathematics; an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proo ...
s. Each branch of mathematics has its own objects. * Mathematical structure a set endowed with some additional features on the set (e.g., operation, relation,
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
). A partial list of possible structures are
measures Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Measu ...
, algebraic structures (
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s,
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s, etc.),
topologies In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, metric structures (
geometries This is a list of geometry topics. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Archimedes' use of infinitesimals * Birational geometry * Complex geomet ...
), orders,
events Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of ev ...
, equivalence relations,
differential structure In mathematics, an ''n''-dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for dif ...
s, and
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) * Categories (Peirce) * ...
. :* Equivalent definitions of mathematical structures * Abstraction the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena.


Branches and subjects


Quantity

*
Number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
is a branch of pure mathematics devoted primarily to the study of the
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
and integer-valued functions. * Arithmetic (from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
ἀριθμός ''arithmos'', 'number' and τική έχνη ''tiké échne', 'art') is a branch of mathematics that consists of the study of numbers and the properties of the traditional
mathematical operations In mathematics, an operation is a function which takes zero or more input values (also called "''operands''" or "arguments") to a well-defined output value. The number of operands is the arity of the operation. The most commonly studied operat ...
on them. :*
Elementary arithmetic The operators in elementary arithmetic are addition, subtraction, multiplication, and division. The operators can be applied on both real numbers and imaginary numbers. Each kind of number is represented on a number line designated to the type ...
is the part of arithmetic which deals with basic operations of addition, subtraction, multiplication, and division. :*
Modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his boo ...
:*
Second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precur ...
is a collection of axiomatic systems that formalize the natural numbers and their subsets. :*
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. :* Floating-point arithmetic is arithmetic using formulaic representation of real numbers as an approximation to support a trade-off between range and precision. *
Numbers A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
a
mathematical object A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical p ...
used to count, measure, and label. :*
List of types of numbers Numbers can be classified according to how they are represented or according to the properties that they have. Main types * Natural numbers (\mathbb): The counting numbers are commonly called natural numbers; however, other definitions inclu ...
::*
Natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
,
Integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
,
Rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
,
Real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
,
Irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
,
Transcendental number In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes ...
, Imaginary number,
Complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
,
Hypercomplex number In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group represen ...
,
p-adic number In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensi ...
::* Negative number,
Positive number In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
,
Parity (mathematics) In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 4 ...
::*
Prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
,
Composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
::*Non-standard numbers, including: Infinity,
transfinite number In mathematics, transfinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to q ...
, ordinal number,
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
,
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers ...
,
surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals ...
, infinitesimal :* List of numbers in various languages :*
Numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbo ...
,
Unary numeral system The unary numeral system is the simplest numeral system to represent natural numbers: to represent a number ''N'', a symbol representing 1 is repeated ''N'' times. In the unary system, the number 0 (zero) is represented by the empty string, that ...
,
Numeral prefix Numeral or number prefixes are prefixes derived from numerals or occasionally other numbers. In English and many other languages, they are used to coin numerous series of words. For example: * unicycle, bicycle, tricycle (1-cycle, 2-cycle, 3-cy ...
,
List of numeral systems There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-valu ...
,
List of numeral system topics This is a list of Wikipedia articles on topics of numeral system and "numeric representations" See also: computer numbering formats and number names. Arranged by base * Radix, radix point, mixed radix, base (mathematics) * Unary numeral syste ...
:*
Counting Counting is the process of determining the number of elements of a finite set of objects, i.e., determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every ele ...
,
Number line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
,
Numerical digit A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin ...
,
Zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
::* Radix,
Radix economy The radix economy of a number in a particular base (or radix) is the number of digits needed to express it in that base, multiplied by the base (the number of possible values each digit could have). This is one of various proposals that have been ...
,
Base (exponentiation) In exponentiation, the base is the number b in an expression of the form bn. Related terms The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more comm ...
, Table of bases :*
Mathematical notation Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations and any other mathematical objects, and assembling them into expressions and formulas. Mathematical notation is widely used in mathem ...
, Infix notation,
Scientific notation Scientific notation is a way of expressing numbers that are too large or too small (usually would result in a long string of digits) to be conveniently written in decimal form. It may be referred to as scientific form or standard index form, o ...
, Positional notation,
Notation in probability and statistics Probability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols. Probability theory * Random variables are usually written in upper case roman letters: ''X'', ''Y'', ...
,
History of mathematical notation The history of mathematical notation includes the commencement, progress, and cultural diffusion of mathematical symbols and the conflict of the methods of notation confronted in a notation's move to popularity or inconspicuousness. Mathematical ...
, List of mathematical notation systems :* Fraction, Decimal,
Decimal separator A decimal separator is a symbol used to separate the integer part from the fractional part of a number written in decimal form (e.g., "." in 12.45). Different countries officially designate different symbols for use as the separator. The choi ...
*
Operation (mathematics) In mathematics, an operation is a function which takes zero or more input values (also called "'' operands''" or "arguments") to a well-defined output value. The number of operands is the arity of the operation. The most commonly studied opera ...
an operation is a
mathematical function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the functi ...
which takes zero or more input values called
operand In mathematics, an operand is the object of a mathematical operation, i.e., it is the object or quantity that is operated on. Example The following arithmetic expression shows an example of operators and operands: :3 + 6 = 9 In the above exam ...
s, to a well-defined output value. The number of operands is the arity of the operation. :* Calculation, Computation, Expression (mathematics), Order of operations,
Algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
:*Types of Operations: Binary operation,
Unary operation In mathematics, an unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function , where is a set. The function is a unary operation o ...
,
Nullary operation Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. ...
:*Operands: Order of operations, Addition, Subtraction, Multiplication,
Division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
,
Exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to r ...
,
Logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
,
Root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
::*
Function (mathematics) In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the functi ...
,
Inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X ...
::*
Commutative property In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
, Anticommutative property,
Associative property In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacemen ...
,
Additive identity In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element ''x'' in the set, yields ''x''. One of the most familiar additive identities is the number 0 from elemen ...
,
Distributive property In mathematics, the distributive property of binary operations generalizes the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmet ...
::* Summation,
Product (mathematics) In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called ''factors''. For example, 30 is the product of 6 and 5 (the result of multiplication), and x\cd ...
,
Divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
,
Quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
,
Greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
, Quotition and partition,
Remainder In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algeb ...
, Fractional part ::* Subtraction without borrowing,
Long division In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (Positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps ...
, Short division,
Modulo operation In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is th ...
,
Chunking (division) In mathematics education at the primary school level, chunking (sometimes also called the partial quotients method) is an elementary approach for solving simple division questions by repeated subtraction. It is also known as the hangman method with ...
,
Multiplication and repeated addition In mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition. Participants in the debate brought up multiple perspectives, including axioms of arithmetic, ...
,
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
,
Division by zero In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as \tfrac, where is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is ...
:*
Plus and minus signs The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resul ...
,
Multiplication sign The multiplication sign, also known as the times sign or the dimension sign, is the symbol , used in mathematics to denote the multiplication operation and its resulting product. While similar to a lowercase X (), the form is properly a four- ...
,
Division sign The division sign () is a symbol consisting of a short horizontal line with a dot above and another dot below, used in Anglophone countries to indicate mathematical division. However, this usage, though widespread in some countries, is not u ...
,
Equals sign The equals sign (British English, Unicode) or equal sign (American English), also known as the equality sign, is the mathematical symbol , which is used to indicate equality in some well-defined sense. In an equation, it is placed between tw ...
:*
Equality (mathematics) In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality b ...
, Inequality (mathematics),
Logical equivalence In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending o ...
:*
Ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
*
Variable (mathematics) In mathematics, a variable (from Latin '' variabilis'', "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a ...
,
Constant (mathematics) In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance (i.e. unchanging with respect to some other value); as a noun, it has two different meanings: * A fixed and well-defined number or other non-c ...
* Measurement


Structure

*
Algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
*
Abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
*
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
( Outline) *
Number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
*
Order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article int ...
*
Function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...


Space

*
Geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
* Algebraic geometry :* List of algebraic geometry topics :* List of algebras *
Trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies ...
* Differential geometry *
Topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
*
Fractal geometry In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu ...


Change

*
Calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
*
Vector calculus Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
*
Differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s *
Dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in ...
s * Chaos theory *
Analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...


Foundations and philosophy

*
Philosophy of mathematics The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in peop ...
* Category theory *
Set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
*
Type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...


Mathematical logic

* Model theory * Proof theory *
Set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
*
Type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...
*
Recursion theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
*
Theory of Computation In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how algorithmic efficiency, efficiently they can be solved or t ...
*
List of logic symbols In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subs ...
*
Second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precur ...
is a collection of axiomatic systems that formalize the natural numbers and their subsets. *
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano.


Discrete mathematics

* Combinatorics ( outline) *
Cryptography Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adver ...
*
Graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
*
Number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...


Applied mathematics

*
Mathematical chemistry Mathematical chemistry is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. Mathematical chemistry has also sometimes been called co ...
*
Mathematical physics Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developme ...
* Analytical mechanics * Mathematical fluid dynamics *
Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ...
*
Control theory Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
*
Dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in ...
s * Mathematical optimization *
Operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
*
Probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speakin ...
* Statistics * Game theory *
Engineering mathematics Engineering mathematics is a branch of applied mathematics concerning mathematical methods and techniques that are typically used in engineering and industry. Along with fields like engineering physics and engineering geology, both of which may be ...
* Mathematical economics *
Financial mathematics Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets. In general, there exist two separate branches of finance that require ...
* Information theory *
Cryptography Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adver ...
* Mathematical biology


History


Regional history

*
Babylonian mathematics Babylonian mathematics (also known as ''Assyro-Babylonian mathematics'') are the mathematics developed or practiced by the people of Mesopotamia, from the days of the early Sumerians to the centuries following the fall of Babylon in 539 BC. Babyl ...
* Egyptian mathematics * Indian mathematics * Greek mathematics * Chinese mathematics * History of the Hindu–Arabic numeral system * Islamic mathematics *
Japanese mathematics denotes a distinct kind of mathematics which was developed in Japan during the Edo period (1603–1867). The term ''wasan'', from ''wa'' ("Japanese") and ''san'' ("calculation"), was coined in the 1870s and employed to distinguish native Japanese ...


Subject history

* History of combinatorics * History of arithmetic *
History of algebra Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fun ...
*
History of geometry Geometry (from the grc, γεωμετρία; '' geo-'' "earth", '' -metron'' "measurement") arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the stu ...
* History of calculus *
History of logic The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic (or term logic) as found ...
*
History of mathematical notation The history of mathematical notation includes the commencement, progress, and cultural diffusion of mathematical symbols and the conflict of the methods of notation confronted in a notation's move to popularity or inconspicuousness. Mathematical ...
*
History of trigonometry Early study of triangles can be traced to the 2nd millennium BC, in Egyptian mathematics (Rhind Mathematical Papyrus) and Babylonian mathematics. Trigonometry was also prevalent in Kushite mathematics. Systematic study of trigonometric functions be ...
* History of writing numbers *
History of statistics Statistics, in the modern sense of the word, began evolving in the 18th century in response to the novel needs of industrializing sovereign states. In early times, the meaning was restricted to information about states, particularly demographics ...
*
History of probability Probability has a dual aspect: on the one hand the likelihood of hypotheses given the evidence for them, and on the other hand the behavior of stochastic processes such as the throwing of dice or coins. The study of the former is historically olde ...
*
History of group theory The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory: the theory of algebraic equations, number theory and geometry. Jose ...
*
History of the function concept The mathematical concept of a function emerged in the 17th century in connection with the development of the calculus; for example, the slope \operatorname\!y/\operatorname\!x of a graph at a point was regarded as a function of the ''x''-coordina ...
*
History of logarithms The history of logarithms is the story of a correspondence (in modern terms, a group isomorphism) between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and wa ...
*
History of the Theory of Numbers ''History of the Theory of Numbers'' is a three-volume work by L. E. Dickson summarizing work in number theory up to about 1920. The style is unusual in that Dickson mostly just lists results by various authors, with little further discussion. T ...
*
History of Grandi's series Geometry and infinite zeros Grandi Guido Grandi (1671–1742) reportedly provided a simplistic account of the series in 1703. He noticed that inserting parentheses into produced varying results: either :(1-1) + (1-1) + \cdots = 0 or :1+(-1+1)+(- ...
*
History of manifolds and varieties The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surface (topology), surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additio ...


Psychology

*
Mathematics education In contemporary education, mathematics education, known in Europe as the didactics or pedagogy of mathematics – is the practice of teaching, learning and carrying out scholarly research into the transfer of mathematical knowledge. Although re ...
* Numeracy *
Numerical Cognition Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes ...
* Subitizing * Mathematical anxiety *
Dyscalculia Dyscalculia () is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations, and learning facts in mathematics. ...
*
Acalculia Acalculia is an acquired Disability, impairment in which people have difficulty performing simple mathematical tasks, such as adding, subtracting, multiplying and even simply stating which of two numbers is larger. Acalculia is distinguished fro ...
* Ageometresia *
Number sense In psychology, number sense is the term used for the hypothesis that some animals, particularly humans, have a biologically determined ability that allows them to represent and manipulate large numerical quantities. The term was popularized by Sta ...
* Numerosity adaptation effect * Approximate number system * Mathematical maturity


Influential mathematicians

See
Lists of mathematicians Lists of mathematicians cover notable mathematicians by nationality, ethnicity, religion, profession and other characteristics. Alphabetical lists are also available (see table to the right). Lists by nationality, ethnicity or religion * List ...
.


Mathematical notation

* List of algebras * List of axioms *
List of equations This is a list of equations, by Wikipedia page under appropriate bands of maths, science and engineering. Eponymous equations Mathematics * Cauchy–Riemann equations * Chapman–Kolmogorov equation * Maurer–Cartan equation * Pell's equati ...
*
List of mathematical functions In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed ...
* List of types of functions * List of mathematical jargon * List of mathematical abbreviations *
List of mathematical proofs A list of articles with mathematical proofs: Theorems of which articles are primarily devoted to proving them *Bertrand's postulate and Proof of Bertrand's postulate, a proof *Estimation of covariance matrices *Fermat's little theorem and Proofs ...
* List of long mathematical proofs *
List of mathematical symbols A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. ...
* List of mathematical symbols by subject *
List of rules of inference This is a list of rules of inference, logical laws that relate to mathematical formulae. Introduction Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules ...
*
List of theorems A ''list'' is any set of items in a row. List or lists may also refer to: People * List (surname) Organizations * List College, an undergraduate division of the Jewish Theological Seminary of America * SC Germania List, German rugby unio ...
*
List of theorems called fundamental In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calcu ...
*
List of unsolved problems in mathematics Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Eucli ...
* Table of mathematical symbols by introduction date *
Notation in probability and statistics Probability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols. Probability theory * Random variables are usually written in upper case roman letters: ''X'', ''Y'', ...
*
List of logic symbols In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subs ...
* Physical constants *
Greek letters used in mathematics, science, and engineering Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these conte ...
*
Latin letters used in mathematics Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certai ...
*
Mathematical alphanumeric symbols Mathematical Alphanumeric Symbols is a Unicode block comprising styled forms of Latin and Greek letters and decimal digits that enable mathematicians to denote different notions with different letter styles. The letters in various fonts ofte ...
*
Mathematical operators and symbols in Unicode The Unicode Standard encodes almost all standard characters used in mathematics. Unicode Technical Report #25 provides comprehensive information about the character repertoire, their properties, and guidelines for implementation. Mathematical op ...
* ISO 31-11 (Mathematical signs and symbols for use in physical sciences and technology)


Classification systems

* Mathematics in the Dewey Decimal Classification system *'' Mathematics Subject Classification'' – alphanumerical classification scheme collaboratively produced by staff of and based on the coverage of the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH.


Journals and databases

*'' Mathematical Reviews'' – journal and online database published by the American Mathematical Society (AMS) that contains brief synopses (and occasionally evaluations) of many articles in mathematics, statistics and theoretical computer science. *''
Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastruct ...
'' – service providing reviews and abstracts for articles in pure and applied mathematics, published by Springer Science+Business Media. It is a major international reviewing service which covers the entire field of mathematics. It uses the Mathematics Subject Classification codes for organizing their reviews by topic.


See also

* List of laws *
Lists of mathematics topics Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. ...
* Areas of mathematics *
Glossary of areas of mathematics Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods ...
* Mathematics


References


Bibliography


Citations


Notes


External links


MAA Reviews – The Basic Library List – Mathematical Association of America
* ttp://www.math.cornell.edu/~hatcher/Other/topologybooks.pdf A List of Recommended Books in Topology, compiled by Allen Hatcher, Cornell U.br>Books in algebraic geometry in nLab
{{Outline footer + + Mathematics Mathematics Mathematics-related lists mk:Преглед на математиката