Thyroid hormone receptor
   HOME

TheInfoList



OR:

The thyroid hormone receptor (TR) is a type of nuclear receptor that is activated by binding thyroid hormone. TRs act as transcription factors, ultimately affecting the regulation of gene transcription and translation. These receptors also have non-genomic effects that lead to second messenger activation, and corresponding cellular response.


Structure

There are four domains that are present in all TRs. Two of these, the DNA-binding (DBD) and hinge domains, are involved in the ability of the receptor to bind hormone response elements( HREs). TRs also have a ligand binding domain (LBD) that allows them to bind to thyroid hormone with high affinity. The fourth domain is a transactivation domain which allows the receptor to bind other transcription factors.


Function

Thyroid hormone receptors play critical roles in the regulation of
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
,
heart rate Heart rate (or pulse rate) is the frequency of the heartbeat measured by the number of contractions (beats) of the heart per minute (bpm). The heart rate can vary according to the body's physical needs, including the need to absorb oxygen and excr ...
, and
development Development or developing may refer to: Arts *Development hell, when a project is stuck in development *Filmmaking, development phase, including finance and budgeting *Development (music), the process thematic material is reshaped * Photograph ...
of organisms. These receptors are typically associated with retinoic acid receptors (RXR), forming heterodimers. In its inactivated form, the TR inhibits gene transcription by binding corepressors. This adds an additional level of regulation to an already tightly regulated process. When activated, these receptors become associated with other activators and initiate gene transcription. TRs are also involved in cell viability, and are believed to have other non-genomic affects that are currently being investigated.


Mechanism of action

Thyroid hormone is transported into the cell through a transporter. Once inside of the cell, the hormone can have genomic or non-genomic effects. The genomic signaling pathway directly influences gene transcription and translation, while the non-genomic pathway involves more rapid, cellular changes, some of which also regulate gene expression through more indirect signaling.


Genomic signaling pathway

Thyroid hormone receptors regulate gene expression by binding to hormone response elements (HREs) in DNA either as monomers, heterodimers with other nuclear receptors, or
homodimer In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has ...
s. Dimerizing with different nuclear receptors leads to the regulation of different genes. THR commonly interacts with the retinoid X receptor (RXR), a nuclear retinoic acid receptor. TR/RXR heterodimers are the most transcriptionally active form of TR.


Retinoic acid receptors

Retinoic acid receptor The retinoic acid receptor (RAR) is a type of nuclear receptor which can also act as a ligand-activated transcription factor that is activated by both all-trans retinoic acid and 9-cis retinoic acid the retinoid active derivatives of Vitamin A ...
s are located in the nucleus and commonly form complexes with steroid hormone receptors in order to regulate the production of essential gene products. Retinoic acid receptors bind
corepressor In the field of molecular biology, a corepressor is a molecule that represses the expression of genes. In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, ...
s in the absence of their ligand,
retinoic acid Retinoic acid (used simplified here for all-''trans''-retinoic acid) is a metabolite of vitamin A1 (all-''trans''-retinol) that mediates the functions of vitamin A1 required for growth and development. All-''trans''-retinoic acid is required in ...
, which is formed from the metabolism of vitamin A. Retinoid X receptors are activated by binding to 9-''cis''-retinoic acid, a specific isomer of retinoic acid. Other retinoic acid receptors are less specific, allowing them to bind isomers of retinoic acid with similar affinities. Once RXRs bind ligand, they undergo conformational changes that reduce their affinity for corepressors—allowing them to attract coactivators to the transcription site. Once all of the necessary cofactors are present, the presence of a DNA binding domain permits the binding of response elements, initiating gene transcription. Due to their role in gene regulation, studies have shown that these receptors are necessary for growth and development.


Regulation of TRE gene products

In the absence of hormone, TR forms a complex with
corepressor In the field of molecular biology, a corepressor is a molecule that represses the expression of genes. In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, ...
proteins such as nuclear receptor co-repressor 1 (N-CoR) and 2 (N-CoR2). While these cofactors are present, TR binds HREs in a transcriptionally inactive state. This inhibition of gene transcription allows for tight regulation of gene products. Binding of thyroid hormone results in a conformational change in helix 12 of the TR transactivation domain, which displaces the corepressors from the receptor/DNA complex.
Coactivator A coactivator is a type of transcriptional coregulator that binds to an activator (a transcription factor) to increase the rate of transcription of a gene or set of genes. The activator contains a DNA binding domain that binds either to a DNA ...
proteins are recruited, forming a DNA/TR/coactivator complex. One coactivator recruited to the site is nuclear receptor co-activator 1 (NCoA-1). RNA polymerase is recruited to the site and transcribes downstream DNA into messenger RNA (mRNA). The mRNA generated is then translated into the corresponding proteins. The protein products from this process drive the changes in cell function observed in the presence of thyroid hormone.


Non-genomic signaling pathway

Non-genomic effects are faster than genomic effects because they do not require transcription and translation—two very precise and time-consuming processes. Initially most scientists presumed that non-genomic effects were mediated by non-nuclear receptors, but now there is growing evidence for non-genomic effects mediated in the cytoplasm by the traditional nuclear receptors. For example, TR-α1 (a specific isoform of TR) has been linked to cell viability, which is hypothesized to involve a rise in cGMP concentration (through an unknown mechanism) and the corresponding activation of
protein kinase G cGMP-dependent protein kinase or protein kinase G (PKG) is a serine/threonine-specific protein kinase that is activated by cGMP. It phosphorylates a number of biologically important targets and is implicated in the regulation of smooth muscle ...
. Other non-genomic effects that have been observed include the regulation of mitochondrial
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
, stimulation of
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
uptake, altering cytoskeleton organization, regulating ion pump concentrations at the membrane, and the regulation of osteogenesis. Unfortunately, no specific molecular mechanisms have been provided for these nongenomic signaling pathways, so testing the relative importance of genomic and nongenomic signaling by the nuclear receptors using specific mutations that selectively eliminate one action or the other was not carried out. In contrast, more recently, a specific molecular mechanism for TR-β signaling through the PI3 kinase has been identified, which allowed scientists to obtain direct genetic evidence for the involvement of TR-β signaling through the PI3 kinase in brain development and metabolism, two of the primary physiological effects of thyroid hormone action.


Isoforms

There are two main classes of the thyroid hormone receptor, alpha and beta. The localization of these subtypes, summarized in Table 1, is largely dependent upon post-transcriptional splicing. Genes on chromosomes 3 and 17 are transcribed and translated into c-erbA
gene product A gene product is the biochemical material, either RNA or protein, resulting from expression of a gene. A measurement of the amount of gene product is sometimes used to infer how active a gene is. Abnormal amounts of gene product can be correlate ...
s. Splicing of these gene products leads to the production of different isoforms. There are three TR-α receptor splice variants encoded by the ''THRA'' (thyroid hormone receptor alpha) gene and three TR-β isoform splice variants encoded by the ''THRB'' (thyroid hormone receptor beta) gene. Of these variants, thyroxine is only able to bind to four of them: TR-α1, TR-β1, TR-β2, and TR-β3.


Disease linkage

Certain mutations in the thyroid hormone receptor are associated with
thyroid hormone resistance Thyroid hormone resistance (also resistance to thyroid hormone (RTH), and sometimes Refetoff syndrome) describes a rare syndrome in which the thyroid hormone levels are elevated but the thyroid stimulating hormone (TSH) level is not suppressed, or ...
. The clinical diagnosis of t hyroid hormone resistance syndrome (THRS) depends on the location of the resistance, which can be localized to the pituitary gland, peripheral tissues, or both. Patients who present with resistance in both tissue types are diagnosed with global resistance to thyroid hormone. Mutations to both TR genes have been observed clinically, however, THRB gene mutations are much more common.


THRB gene mutation

TR-βresistance an autosomal dominant disease. This means only one copy of the mutated gene on
chromosome 3 Chromosome 3 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 3 spans almost 200 million base pairs (the building material of DNA) and represents about 6.5 percent of the total DNA in ...
needs to be inherited in order for an individual to present with this condition. THRB mutation directly affects the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. In a healthy individual, the TR-β2 expressed in the pituitary gland plays a major role in regulating thyroid-stimulating hormone (TSH) levels through negative feedback. TSH stimulates the thyroid to secrete thyroid hormone. Once secreted, thyroid hormone acts on these receptors and inhibits transcription of ''Tshb''. This feedback inhibition stops further TSH production, inhibiting thyroid hormone secretion downstream. When the THRB gene is mutated, the receptors on the pituitary can no longer bind thyroid hormone. Due to this, TSH production and secretion is not regulated to the same degree and the thyroid continues to be stimulated. The elimination of the negative feedback loop results in the heightened levels of thyroid hormone presented by patients with this condition.


THRA gene mutation

The THRA gene is located on
chromosome 17 Chromosome 17 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 17 spans more than 83 million base pairs (the building material of DNA) and represents between 2.5 and 3% of the total D ...
. Not as much information is known about mutations to this gene because it is far less common than mutations to THRB. Unlike THRB mutations, THRA mutations do not disrupt the HPT axis. This can make TR-α resistance more difficult to diagnose because patients do not typically present with elevations in thyroid hormone concentration. Due to the high TR-α1 expression in the heart, the cardiovascular system is highly affected by this condition. Additionally, thyroid hormone plays an important role in bone development. Thus, patients with this condition have consistently presented with short stature.


Symptoms

Symptoms of thyroid hormone resistance syndrome can be similar to those seen in hypothyroidism. Hypothyroidism is a disease in which the thyroid does not produce enough thyroid hormone. Patients with this condition have also presented with symptoms similar to hyperthyroidism. In contrast to hypothyroidism, hyperthyroidismis a disease in which the thyroid produces too much thyroid hormone. Due to the large array of potential symptoms, this condition can be misleading and is often difficult for medical professionals to diagnose. Common symptoms of TR mutation include: * Depression * Loss of vision * Heart problems * Weight gain * Fatigue * Hearing loss * Sensitivity to cold * Weakness * Issues with
digestion Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intest ...
*
Cognitive impairment Cognitive deficit is an inclusive term to describe any characteristic that acts as a barrier to the cognition process. The term may describe * deficits in overall intelligence (as with intellectual disabilities), * specific and restricted defici ...
Changes to the menstrual cycle


Treatment

Treating patients with hypothyroidism caused by the absence of functional TRs is difficult. Treatments prescribed to patients with
thyroid hormone resistance Thyroid hormone resistance (also resistance to thyroid hormone (RTH), and sometimes Refetoff syndrome) describes a rare syndrome in which the thyroid hormone levels are elevated but the thyroid stimulating hormone (TSH) level is not suppressed, or ...
largely depend on the symptoms they present and the type of resistance they have. For those whose conditions mimic hypothyroidism, prescribing normal thyroid hormone doses may not remedy the symptoms they are experiencing. In order for a ligand to have an effect, it must be able to bind to a receptor. Individuals with a THRB or THRA mutation have less receptors that are able to bind ligand, and a corresponding drop in tissue responsiveness to thyroid hormone. For this reason, physicians may prescribe higher doses of the hormone to increase the probability that the ligand will reach a TR that is functional. Prescribing thyroid hormone in any dose to patients presenting with symptoms mimicking hyperthyroidism does not improve the condition. For these individuals, beta-blockers can be prescribed to treat the increased sympathetic activation they experience. Beta-blockers are competitive inhibitors of adrenaline, the post-ganglionic neurotransmitter released by cells of the sympathetic nervous system. By blocking the ability of receptors to bind
adrenaline Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands an ...
, beta-blockers have been observed to alleviate symptoms of anxiety, increased blood pressure, and irregular heartbeat, amongst others. Anti-anxiety medications can also be prescribed to individuals with this conditions to treat symptoms of anxiety.


References


External links


Overview at vivo.colostate.edu
* {{Thyroid hormone receptor modulators 1