Thermogravimetric analysis
   HOME

TheInfoList



OR:

Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of
thermal analysis Thermal analysis is a branch of materials science where the properties of materials are studied as they change with temperature. Several methods are commonly used – these are distinguished from one another by the property which is measured: * ...
in which the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of a sample is measured over
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
as the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
changes. This measurement provides information about physical phenomena, such as
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states ...
s,
absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which s ...
,
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
and
desorption Desorption is the physical process where a previously adsorbed substance is released from a surface. This happens when a molecule gains enough energy to overcome the activation barrier of the bounding energy that keeps it in the surface. There ...
; as well as chemical phenomena including
chemisorption Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like cor ...
s,
thermal decomposition Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is re ...
, and solid-gas reactions (e.g.,
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
or reduction).


Thermogravimetric analyzer

Thermogravimetric analysis (TGA) is conducted on an instrument referred to as a thermogravimetric analyzer. A thermogravimetric analyzer continuously measures mass while the temperature of a sample is changed over time. Mass, temperature, and time are considered base measurements in thermogravimetric analysis while many additional measures may be derived from these three base measurements. A typical thermogravimetric analyzer consists of a precision balance with a sample pan located inside a furnace with a programmable control temperature. The temperature is generally increased at constant rate (or for some applications the temperature is controlled for a constant mass loss) to incur a thermal reaction. The thermal reaction may occur under a variety of atmospheres including: ambient air,
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
, inert gas, oxidizing/reducing gases, corrosive gases, carburizing gases, vapors of liquids or "self-generated atmosphere"; as well as a variety of
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
s including: a high vacuum, high pressure, constant pressure, or a controlled pressure. The thermogravimetric data collected from a thermal reaction is compiled into a plot of mass or percentage of initial mass on the y axis versus either temperature or time on the x-axis. This plot, which is often smoothed, is referred to as a TGA
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
. The first
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of the TGA curve (the DTG curve) may be plotted to determine
inflection points In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (British English: inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of ...
useful for in-depth interpretations as well as differential thermal analysis. A TGA can be used for materials characterization through analysis of characteristic decomposition patterns. It is an especially useful technique for the study of
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic materials, including
thermoplastics A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
, thermosets, elastomers, composites, plastic films,
fibers Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
,
coatings A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Powd ...
, paints, and fuels.


Types of TGA

There are three types of thermogravimetry: *Isothermal or static thermogravimetry: In this technique, the sample weight is recorded as a function of time at constant temperature. *Quasistatic thermogravimetry: In this technique, the sample temperature is raised in sequential steps separated by isothermal intervals, during which the sample mass reaches stability before the start of the next temperature ramp. *Dynamic thermogravimetry: In this technique the sample is heated in an environment whose temperature is changed in a linear manner.


Applications


Thermal stability

TGA can be used to evaluate the thermal stability of a material. In a desired temperature range, if a species is thermally stable, there will be no observed mass change. Negligible mass loss corresponds to little or no slope in the TGA trace. TGA also gives the upper use temperature of a material. Beyond this temperature the material will begin to degrade. TGA is used in the analysis of polymers. Polymers usually melt before they decompose, thus TGA is mainly used to investigate the thermal stability of polymers. Most polymers melt or degrade before 200 °C. However, there is a class of thermally stable polymers that are able to withstand temperatures of at least 300 °C in air and 500 °C in inert gases without structural changes or strength loss, which can be analyzed by TGA.


Oxidation and combustion

The simplest materials characterization is the residue remaining after a reaction. For example, a combustion reaction could be tested by loading a sample into a thermogravimetric analyzer at normal conditions. The thermogravimetric analyzer would cause ion combustion in the sample by heating it beyond its
ignition temperature The autoignition temperature or kindling point of a substance is the lowest temperature in which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to su ...
. The resultant TGA curve plotted with the y axis as percentage of initial mass would show the residue at the final point of the curve. Oxidative mass losses are the most common observable losses in TGA. Studying the resistance to oxidation in copper alloys is very important. For example,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
(National Aeronautics and Space Administration) is conducting research on advanced copper alloys for their possible use in
combustion engines An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combu ...
. However, oxidative degradation can occur in these alloys as copper oxides form in atmospheres that are rich in oxygen. Resistance to oxidation is very important because NASA wants to be able to reuse shuttle materials. TGA can be used to study the static oxidation of materials such as these for practical use. Combustion during TG analysis is identifiable by distinct traces made in the TGA thermograms produced. One interesting example occurs with samples of as-produced unpurified
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
that have a large amount of metal
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
present. Due to combustion, a TGA trace can deviate from the normal form of a well-behaved function. This phenomenon arises from a rapid temperature change. When the weight and temperature are plotted versus time, a dramatic slope change in the first derivative plot is concurrent with the mass loss of the sample and the sudden increase in temperature seen by the thermocouple. The mass loss could be the result of particles of smoke released from burning caused by inconsistencies in the material itself, beyond the oxidation of carbon due to poorly controlled weight loss. Different weight losses on the same sample at different points can also be used as a diagnosis of the sample's anisotropy. For instance, sampling the top side and the bottom side of a sample with dispersed particles inside can be useful to detect sedimentation, as thermograms will not overlap but will show a gap between them if the particle distribution is different from side to side.


Thermogravimetric kinetics

Thermogravimetric kinetics may be explored for insight into the reaction mechanisms of thermal (catalytic or non-catalytic) decomposition involved in the
pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements '' ...
and
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
processes of different materials. Activation energies of the decomposition process can be calculated using Kissinger method. Though a constant heating rate is more common, a constant mass loss rate can illuminate specific reaction kinetics. For example, the kinetic parameters of the carbonization of polyvinyl butyral were found using a constant mass loss rate of 0.2 wt %/min.


Operation in combination with other instruments

Thermogravimetric analysis is often combined with other processes or used in conjunction with other analytical methods. For example, the TGA instrument continuously weighs a sample as it is heated to temperatures of up to 2000 °C for coupling with Fourier-transform infrared spectroscopy (FTIR) and
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
gas analysis. As the temperature increases, various components of the sample are decomposed and the weight percentage of each resulting mass change can be measured.


References

{{DEFAULTSORT:Thermogravimetric Analysis Thermodynamics Materials science Analytical chemistry