The Coal Question
   HOME

TheInfoList



OR:

''The Coal Question; An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal Mines'' is a book that
economist An economist is a professional and practitioner in the social sciences, social science discipline of economics. The individual may also study, develop, and apply theories and concepts from economics and write about economic policy. Within this ...
William Stanley Jevons William Stanley Jevons (; 1 September 183513 August 1882) was an English economist and logician. Irving Fisher described Jevons's book ''A General Mathematical Theory of Political Economy'' (1862) as the start of the mathematical method in ec ...
wrote in 1865 to explore the implications of Britain's reliance on
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when ...
. Given that coal was a finite, non-renewable energy resource, Jevons raised the question of
sustainability Specific definitions of sustainability are difficult to agree on and have varied in the literature and over time. The concept of sustainability can be used to guide decisions at the global, national, and individual levels (e.g. sustainable livi ...
. "Are we wise," he asked rhetorically, "in allowing the commerce of this country to rise beyond the point at which we can long maintain it?" His central thesis was that the supremacy of the
United Kingdom of Great Britain and Ireland The United Kingdom of Great Britain and Ireland was a sovereign state in the British Isles that existed between 1801 and 1922, when it included all of Ireland. It was established by the Acts of Union 1800, which merged the Kingdom of Grea ...
over global affairs was transitory, given the finite nature of its primary energy resource. In propounding this thesis, Jevons covered a range of issues central to sustainability, including
limits to growth ''The Limits to Growth'' (''LTG'') is a 1972 report that discussed the possibility of exponential economic and population growth with finite supply of resources, studied by computer simulation. The study used the World3 computer model to simula ...
,
overpopulation Overpopulation or overabundance is a phenomenon in which a species' population becomes larger than the carrying capacity of its environment. This may be caused by increased birth rates, lowered mortality rates, reduced predation or large scale ...
, overshoot, energy return on energy input (
EROEI In energy economics and ecological energetics, energy return on investment (EROI), also sometimes called energy returned on energy invested (ERoEI), is the ratio of the amount of usable energy (the ''exergy'') delivered from a particular energy re ...
), taxation of energy resources,
renewable energy Renewable energy is energy that is collected from renewable resources that are naturally replenished on a human timescale. It includes sources such as sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy ...
alternatives, and resource peakinga subject widely discussed today under the rubric of
peak oil Peak oil is the hypothetical point in time when the maximum rate of global oil production is reached, after which it is argued that production will begin an irreversible decline. It is related to the distinct concept of oil depletion; whil ...
.


The significance of coal

Jevons introduces the first chapter of ''The Coal Question'' with a succinct description of coal's wonders and of society's insatiable appetite for it:
Coal in truth stands not beside but entirely above all other
commodities In economics, a commodity is an economic good, usually a resource, that has full or substantial fungibility: that is, the market treats instances of the good as equivalent or nearly so with no regard to who produced them. The price of a co ...
. It is the material energy of the country — the universal aid — the factor in everything we do. With coal almost any feat is possible or easy; without it we are thrown back into the laborious poverty of early times. With such facts familiarly before us, it can be no matter of surprise that year by year we make larger draughts upon a material of such myriad qualities — of such miraculous powers.
...new applications of coal are of an unlimited character. In the command of force, molecular and mechanical, we have the key to all the infinite varieties of change in place or kind of which nature is capable. No chemical or mechanical operation, perhaps, is quite impossible to us, and invention consists in discovering those which are useful and commercially practicable....
Jevons further argues that coal is the source of the UK's prosperity and global dominance.


Limits to growth and resource peaking

Because the quantity of coal was limited, its access became more difficult with time, and the demand grew exponentially, Jevons argued that limits or boundaries to prosperity would appear sooner than was generally realized:
I must point out the painful fact that such a rate of growth will before long render our consumption of coal comparable with the total supply. In the increasing depth and difficulty of coal mining we shall meet that vague, but inevitable boundary that will stop our progress.
In Jevons' day, British geologists were estimating that the country had
coal reserves Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when dead ...
of 90 billion tons. Jevons believed that extraction of much of this amount would prove to be uneconomical. But, even if the entire quantity could be extracted, Jevons argued, exponential economic growth could not continue unabated. Using historical production estimates, Jevons showed that for the previous 80 years production had grown at a relatively consistent rate of 3.5% per year, or 41% per decade. If this growth rate were to continue, production would grow from approximately 100 million tons in 1865 to more than 2.6 billion tons in 100 years. Jevons then calculated that, in that case, the country would produce approximately 100 billion tons within that period. In short, resources were not sufficient for even 100 years, and long before the 100 years point, the growth rate, which was the measure of prosperity, would have to decline. At some point, production would simply hit a peak, which itself meant dire consequences:
Suppose our progress to be checked within half a century, yet by that time our consumption will probably be three or four times what it now is; there is nothing impossible or improbable in this; it is a moderate supposition, considering that our consumption has increased eight-fold in the last sixty years. But how shortened and darkened will the prospects of the country appear, with mines already deep, fuel dear, and yet a high rate of consumption to keep up if we are not to retrograde.
Even before the peak was reached, high extraction costs could cause the UK to lose the
competitive advantage In business, a competitive advantage is an attribute that allows an organization to outperform its competitors. A competitive advantage may include access to natural resources, such as high-grade ores or a low-cost power source, highly skilled ...
it currently enjoyed in manufacturing and shipping. British coal production did in fact peak in 1913, but at 292 million tons, about half the amount Jevons' extrapolation suggested. Just under a third of this was exported. Since then, production has dropped to less than 20 million tons. Current UK resources are estimated at about 400 million tons.


Population and the "Malthus Doctrine"

According to Jevons, coal depletion had serious ramifications for population growth. The population of the UK had increased by more than 10% each decade for the prior 70 years, not surprising given that coal production was growing at 40% per decade, meaning that the ''per capita'' wealth was growing.
For the present our cheap supplies of coal, and our skill in its employment, and the freedom of our commerce with other wide lands, render us independent of the limited agricultural area of these islands, and take us out of the scope of Malthus' doctrine. We are growing rich and numerous upon a source of wealth of which the fertility does not yet apparently decrease with our demands upon it. Hence the uniform and extraordinary rate of growth which this country presents. We are like settlers spreading in a rich new country of which the boundaries are yet unknown and unfelt.
However, as the growth in coal production slowed, the population growth might easily surpass the production growth, leading to a drop in living conditions:
Now population, when it grows, moves with a certain uniform impetus, like a body in motion; and uniform progress of population, as I have fully explained before, is multiplication in a uniform ratio. But long-continued progress in such a manner is altogether impossible — it must outstrip all physical conditions and bounds; and the longer it continues, the more severely must the ultimate check be felt. I do not hesitate to say, therefore, that the rapid growth of our great towns, gratifying as it is in the present, is a matter of very serious concern as regards the future.
In contrast to
Malthus Thomas Robert Malthus (; 13/14 February 1766 – 29 December 1834) was an English cleric, scholar and influential economist in the fields of political economy and demography. In his 1798 book ''An Essay on the Principle of Population'', Mal ...
's view that resource growth was linear, Jevons took resource growth as being exponential, like population. This modification of Malthus's theory did not alter the conclusion that unrestrained population growth would inevitably surpass the nation's ability to expand its resources. Prosperity, in terms of ''per capita'' consumption, would therefore fall. Moreover, because the primary resource was non-renewable, the fall would be more dramatic than Malthus envisioned:
A farm, however far pushed, will under proper cultivation continue to yield forever a constant crop. But in a mine there is no reproduction, and the produce once pushed to the utmost will soon begin to fail and sink towards zero. So far then as our wealth and progress depend upon the superior command of coal we must not only stop—we must go back.


The Jevons Paradox

Given that energy depletion posed long-term dangers for society, Jevons analyzed possible mitigation measures. In so doing, he considered the phenomenon that has come to be known as
Jevons paradox In economics, the Jevons paradox (; sometimes Jevons effect) occurs when technological progress or government policy increases the efficiency with which a resource is used (reducing the amount necessary for any one use), but the falling cost of ...
. As he wrote:
It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption. The very contrary is the truth.
Jevons described the historical development of engine technology and argued that the great increase in the UK's consumption of coal was due to the efficiency (or "economy") brought about by technological innovations, with particular credit going to
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was ...
's 1776 invention of the
steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be ...
. Like many innovations that followed, such as improved methods for smelting iron, greater economy broadened usage and led to increased energy consumption.
Whatever, therefore, conduces to increase the efficiency of coal, and to diminish the cost of its use, directly tends to augment the value of the steam-engine, and to enlarge the field of its operations.
Jevons also considered and rejected other measures that might reduce consumption, such as coal taxes and export restrictions. Similarly, although he deplored the wasteful practice of burning away low quality coal at the mine site, he did not support conservation legislation. An alternative that he did consider practical was tightened government fiscal policy, based on using tax revenue to reduce the national debt. Tightened fiscal policy would have the effect of slowing economic growth, thereby slowing coal consumption, at least until the debt was erased. Still, Jevons admitted that the overall impact of such a measure, even if it were implemented, would be minimal. In short, the prospect that society would voluntarily reduce consumption was dim.


Energy alternatives

Jevons considered the feasibility of alternative energy sources, foreshadowing modern debates on the subject. Regarding wind and tidal forces, he explained that such sources of intermittent power could be made more useful if the energy were stored, for example by pumping water to a height for subsequent use as hydro power. He reviewed biomass, namely timber, and commented that forests covering all of the UK could not supply energy equal to the current coal production. He also mentioned possibilities for geothermal and solar power, pointing out that if these sources did become useful, the UK would lose its competitive advantages in global industry. He was not aware of the future importance of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
or
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
as prime energy sources since they were developed after his book was published. Regarding electricity, which he pointed out was not an energy source but a means of energy distribution, Jevons noted that hydroelectric power was feasible but that reservoirs would face the problem of silt build-up. He discounted hydrogen generation as a means of electricity storage and distribution, calculating that the energy density of hydrogen would never make it practical. He predicted that steam would remain the most efficient means of generating electricity.


Social responsibility in time of prosperity

Jevons held that despite the desirability of reducing coal consumption, the outlook for implementing significant constraints was dim. Still, the UK's prosperity should at least be seen as imposing responsibilities on the current generation. In particular, Jevons proposed applying the current wealth to righting social ills and to creating a more just society:
We must begin to allow that we can do today what we cannot so well do tomorrow....
Reflection will show that we ought not to think of interfering with the free use of the material wealth which Providence has placed at our disposal, but that our duties wholly consist in the earnest and wise application of it. We may spend it on the one hand in increased luxury and ostentation and corruption, and we shall be blamed. We may spend it on the other hand in raising the social and moral condition of the people, and in reducing the burdens of future generations. Even if our successors be less happily placed than ourselves they will not then blame us.
Jevons also articulated several social ills that particularly concerned him:
The ignorance, improvidence, and brutish drunkenness of our lower working classes must be dispelled by a general system of education, which may effect for a future generation what is hopeless for the present generation. One preparatory and indispensable measure, however, is a far more general restriction on the employment of children in manufacture. At present it may almost be said to be profitable to breed little slaves and put them to labour early, so as to get earnings out of them before they have a will of their own. A worse premium upon improvidence and future wretchedness could not be imagined.


Global developments after Jevons

As Jevons predicted, coal production could not grow exponentially forever. UK production peaked in 1913, and the country lost its global superiority to a new giant of energy production, the United States, a turn of events that was also predicted by Jevons. The UK had by then developed
oil An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) & lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturated ...
resources in the
Middle East The Middle East ( ar, الشرق الأوسط, ISO 233: ) is a geopolitical region commonly encompassing Arabian Peninsula, Arabia (including the Arabian Peninsula and Bahrain), Anatolia, Asia Minor (Asian part of Turkey except Hatay Pro ...
and increasingly used the fuel for power generation. Although UK production could not continue to grow at the annual rate of 3.5%, the world's fossil fuel consumption did grow at this rate until about 1970. According to Jevons, UK coal production in 1865 was estimated as being equal to production in the rest of the world, giving a rough world estimate of 200 million tons. According to the
US Department of Energy The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and manages the research and development of nuclear power and nuclear weapons in the United States. ...
, global
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
consumption in 1970 was 200 Quad BTU, or 7.2 billion tons coal equivalent. Thus, consumption grew by a factor of 36, representing average annual exponential growth over 105 years of about 3.4%. In the 34 subsequent years, to 2004, consumption grew by a factor of 2.1, or 2.2% per year, an indication, according to organizations such as ASPO that global energy resources are thinning. The quantity of the world's remaining energy resources is a matter of dispute and serious concern. Between 2005 and 2007, despite the trebling of oil prices, oil production remained relatively flat, a sign according to many that oil production has peaked. Studies by Dave Rutledge of the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
, and by the Energy Watch Group of GermanyEnergy Watch Group Reports
/ref> indicate that global coal production will also peak within the current generation, perhaps as soon as 2030. A parallel study by the Energy Watch Group also indicates the limited supply of
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
; this report states that like UK coal production 200 years ago, the production of uranium has first targeted high quality ores, and remaining sources are less dense and more difficult to access. Fetter states that at least 230 years of proven uranium reserves are available at present worldwide rates of consumption, and using uranium extraction from seawater, up to 60,000 years of uranium are available. Further, using advanced
breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile mate ...
s and
nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, th ...
, the 230 years of proven uranium reserves may be extended up to 30,000 years; similar gains are achievable from the 60,000 years of uranium reserves from seawater.


See also

*
Coal phase out Coal phase-out is an environmental policy intended to stop using the combustion of coal in coal-burning power plants, and is part of fossil fuel phase-out. Coal is the most carbon-intensive fossil fuel, therefore phasing it out is critical ...
*
Thomas Malthus Thomas Robert Malthus (; 13/14 February 1766 – 29 December 1834) was an English cleric, scholar and influential economist in the fields of political economy and demography. In his 1798 book ''An Essay on the Principle of Population'', Mal ...
* ''
The Limits to Growth ''The Limits to Growth'' (''LTG'') is a 1972 report that discussed the possibility of exponential economic and population growth with finite supply of resources, studied by computer simulation. The study used the World3 computer model to simula ...
'' *
UK environmental law United Kingdom environmental law concerns the protection of the environment in the United Kingdom. Environmental law is increasingly a European and an international issue, due to the cross border issues of air and water pollution, and man-made c ...
*
UK enterprise law United Kingdom enterprise law concerns the ownership and regulation of organisations producing goods and services in the UK, European and international economy. Private enterprises are usually incorporated under the Companies Act 2006, regulated ...


References


Sources

* Malthus, ''An Essay On The Principle Of Population'' (1798 1st edition) with ''A Summary View'' (1830), and Introduction by Professor
Antony Flew Antony Garrard Newton Flew (; 11 February 1923 – 8 April 2010) was a British philosopher. Belonging to the analytic and evidentialist schools of thought, Flew worked on the philosophy of religion. During the course of his career he taught at ...
. Penguin Classics. . * Joel E. Cohen, ''How Many People Can the Earth Support?'', 1995, W. W. Norton & Company. * Howard Bucknell III. ''Energy and the National Defense'', 1981, University of Kentucky Press * William Catton, ''Overshoot'', 1982, University of Illinois Press. * Mathis Wackernagel, ''Our Ecological Footprint: Reducing Human Impact on the Earth'', 1995, New Society Publishers. * Tim Flannery, ''The Future Eaters: An Ecological History of the Australian Lands and People'', 2002, Grove Press. * Michael Williams, ''Deforesting the Earth: From Prehistory to Global Crisis'', 2002, University of Chicago Press. *
Garrett Hardin Garrett James Hardin (April 21, 1915 – September 14, 2003) was an American ecologist. He focused his career on the issue of human overpopulation, and is best known for his exposition of the tragedy of the commons in a 1968 paper of the same t ...
, ''The Ostrich Factor: Our Population Myopia'', 1999, Oxford University Press. * Walter Youngquist, '' Geodestinies: The Inevitable Control of Earth Resources over Nations & Individuals'', 1997, National Book Company. * Heinberg, Richard. ''Powerdown: Options and Actions for a Post-Carbon World'', 2004, New Society Publishers. * Kunstler, James Howard. ''The Long Emergency: Surviving the End of the Oil Age, Climate Change, and Other Converging Catastrophes of the Twenty-first Century'', 2005, Atlantic Monthly Press. * Odum, Howard T. and Elisabeth C. ''A Prosperous Way Down: Principles and Policies'', 2001, University Press of Colorado. * Stanton, ''The rapid growth of human populations 1750–2000'', 2003. * Bartlett, A., ''Scientific American and the Silent Lie'', 2004 * Meadows et al., ''Limits to Growth: The 30-year Update'', 2004. * Diamond, Jared, ''Collapse'', 2005. {{DEFAULTSORT:Coal Question, The 1865 non-fiction books 1860s in the environment Books about coal Environmental non-fiction books Books about economic history Sustainability books Demographic economics 1865 in economics