Tetrahedral
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
, is a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all o ...
composed of four
triangular A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinea ...
faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the
three-dimensional Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called '' parameters'') are required to determine the position of an element (i.e., point). This is the inform ...
case of the more general concept of a Euclidean
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
, and may thus also be called a 3-simplex. The tetrahedron is one kind of
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
, which is a polyhedron with a flat
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two ...
base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the
circumsphere In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the term ''circumcirc ...
) on which all four vertices lie, and another sphere (the insphere)
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
to the tetrahedron's faces.


Regular tetrahedron

A regular tetrahedron is a tetrahedron in which all four faces are
equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
s. It is one of the five regular
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s, which have been known since antiquity. In a regular tetrahedron, all faces are the same size and shape (congruent) and all edges are the same length. Regular tetrahedra alone do not
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
(fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the
alternated cubic honeycomb The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2. Other names i ...
, which is a tessellation. Some tetrahedra that are not regular, including the
Schläfli orthoscheme In geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges (v_0v_1), (v_1v_2), \dots, (v ...
and the
Hill tetrahedron In geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M. J. M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube. Co ...

can tessellate
The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron. The compound figure comprising two such dual tetrahedra form a
stellated octahedron The stellated octahedron is the only stellation of the octahedron. It is also called the stella octangula (Latin for "eight-pointed star"), a name given to it by Johannes Kepler in 1609, though it was known to earlier geometers. It was depic ...
or stella octangula.


Coordinates for a regular tetrahedron

The following Cartesian coordinates define the four vertices of a tetrahedron with edge length 2, centered at the origin, and two level edges: :\left(\pm 1, 0, -\frac\right) \quad \mbox \quad \left(0, \pm 1, \frac\right) Expressed symmetrically as 4 points on the
unit sphere In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ...
, centroid at the origin, with lower face level, the vertices are: v_1 = \left(\sqrt,0,-\frac\right) v_2 = \left(-\sqrt,\sqrt,-\frac\right) v_3 = \left(-\sqrt,-\sqrt,-\frac\right) v_4 = (0,0,1) with the edge length of \sqrt. Still another set of coordinates are based on an alternated
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
or demicube with edge length 2. This form has
Coxeter diagram Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
and
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mo ...
h. The tetrahedron in this case has edge length 2. Inverting these coordinates generates the dual tetrahedron, and the pair together form the stellated octahedron, whose vertices are those of the original cube. :Tetrahedron: (1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1) :Dual tetrahedron: (−1,−1,−1), (−1,1,1), (1,−1,1), (1,1,−1)


Angles and distances

For a regular tetrahedron of edge length ''a'': With respect to the base plane the
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
of a face (2) is twice that of an edge (), corresponding to the fact that the ''horizontal'' distance covered from the base to the apex along an edge is twice that along the
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic f ...
of a face. In other words, if ''C'' is the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
of the base, the distance from ''C'' to a vertex of the base is twice that from ''C'' to the midpoint of an edge of the base. This follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other (see
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a c ...
). For a regular tetrahedron with side length ''a'', radius ''R'' of its circumscribing sphere, and distances ''di'' from an arbitrary point in 3-space to its four vertices, we have :\begin\frac + \frac&= \left(\frac + \frac\right)^2;\\ 4\left(a^4 + d_1^4 + d_2^4 + d_3^4 + d_4^4\right) &= \left(a^2 + d_1^2 + d_2^2 + d_3^2 + d_4^2\right)^2.\end


Isometries of the regular tetrahedron

The vertices of a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
can be grouped into two groups of four, each forming a regular tetrahedron (see above, and also
animation Animation is a method by which still figures are manipulated to appear as moving images. In traditional animation, images are drawn or painted by hand on transparent celluloid sheets to be photographed and exhibited on film. Today, most ani ...
, showing one of the two tetrahedra in the cube). The symmetries of a regular tetrahedron correspond to half of those of a cube: those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by
point inversion In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is inv ...
. The regular tetrahedron has 24 isometries, forming the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
Td, ,3 (*332), isomorphic to the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
, ''S''4. They can be categorized as follows: * T, ,3sup>+, (332) is isomorphic to
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic pr ...
, ''A''4 (the identity and 11 proper rotations) with the following conjugacy classes (in parentheses are given the permutations of the vertices, or correspondingly, the faces, and the unit quaternion representation): ** identity (identity; 1) ** rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°: 4 axes, 2 per axis, together , etc.; ) ** rotation by an angle of 180° such that an edge maps to the opposite edge: , etc.; ) * reflections in a plane perpendicular to an edge: 6 * reflections in a plane combined with 90° rotation about an axis perpendicular to the plane: 3 axes, 2 per axis, together 6; equivalently, they are 90° rotations combined with inversion (x is mapped to −x): the rotations correspond to those of the cube about face-to-face axes


Orthogonal projections of the regular tetrahedron

The regular ''tetrahedron'' has two special
orthogonal projection In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
s, one centered on a vertex or equivalently on a face, and one centered on an edge. The first corresponds to the A2 Coxeter plane.


Cross section of regular tetrahedron

The two skew perpendicular opposite edges of a ''regular tetrahedron'' define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram contain ...
. When the intersecting plane is near one of the edges the rectangle is long and skinny. When halfway between the two edges the intersection is a
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
. The aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly. If the tetrahedron is bisected on this plane, both halves become wedges. This property also applies for tetragonal disphenoids when applied to the two special edge pairs.


Spherical tiling

The tetrahedron can also be represented as a spherical tiling, and projected onto the plane via a
stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter thro ...
. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.


Helical stacking

Regular tetrahedra can be stacked face-to-face in a
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
aperiodic chain called the Boerdijk–Coxeter helix. In four dimensions, all the convex regular 4-polytopes with tetrahedral cells (the
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It ...
,
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
and
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
) can be constructed as tilings of the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
by these chains, which become periodic in the three-dimensional space of the 4-polytope's boundary surface.


Irregular tetrahedra

Tetrahedra which do not have four equilateral faces are categorized and named by the symmetries they do possess. If all three pairs of opposite edges of a tetrahedron are
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', ⟂. It c ...
, then it is called an
orthocentric tetrahedron In geometry, an orthocentric tetrahedron is a tetrahedron where all three pairs of opposite edges are perpendicular. It is also known as an orthogonal tetrahedron since orthogonal means perpendicular. It was first studied by Simon Lhuilier in 1782, ...
. When only one pair of opposite edges are perpendicular, it is called a semi-orthocentric tetrahedron. An isodynamic tetrahedron is one in which the cevians that join the vertices to the incenters of the opposite faces are concurrent. An isogonic tetrahedron has concurrent cevians that join the vertices to the points of contact of the opposite faces with the inscribed sphere of the tetrahedron.


Trirectangular tetrahedron

In a trirectangular tetrahedron the three face angles at ''one'' vertex are
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. Th ...
s, as at the corner of a cube. Kepler discovered the relationship between the cube, regular tetrahedron and trirectangular tetrahedron.


Disphenoid

A
disphenoid In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same ...
is a tetrahedron with four congruent triangles as faces; the triangles necessarily have all angles acute. The regular tetrahedron is a special case of a disphenoid. Other names for the same shape include bisphenoid, isosceles tetrahedron and equifacial tetrahedron.


Orthoschemes

A 3-orthoscheme is a tetrahedron where all four faces are right triangles. An orthoscheme is an irregular
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
that is the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
in which all edges are mutually perpendicular. In a 3-dimensional orthoscheme, the tree consists of three perpendicular edges connecting all four vertices in a linear path that makes two right-angled turns. The 3-orthoscheme is a tetrahedron having two right angles at each of two vertices, so another name for it is birectangular tetrahedron. It is also called a quadrirectangular tetrahedron because it contains four right angles. Coxeter also calls quadrirectangular tetrahedra characteristic tetrahedra, because of their integral relationship to the regular polytopes and their symmetry groups. For example, the special case of a 3-orthoscheme with equal-length perpendicular edges is characteristic of the cube, which means that the cube can be subdivided into instances of this orthoscheme. If its three perpendicular edges are of unit length, its remaining edges are two of length and one of length , so all its edges are edges or diagonals of the cube. The cube can be dissected into six such 3-orthoschemes four different ways, with all six surrounding the same cube diagonal. The cube can also be dissected into 48 ''smaller'' instances of this same characteristic 3-orthoscheme (just one way, by all of its symmetry planes at once). The characteristic tetrahedron of the cube is an example of a Heronian tetrahedron. Every regular polytope, including the regular tetrahedron, has its characteristic orthoscheme. There is a 3-orthoscheme which is the characteristic tetrahedron of the regular tetrahedron. The regular tetrahedron is subdivided into 24 instances of its characteristic tetrahedron by its planes of symmetry. If the regular tetrahedron has edge length 𝒍 = 2, its characteristic tetrahedron's six edges have lengths \sqrt, 1, \sqrt (the exterior right triangle face, the ''characteristic triangle'' 𝟀, 𝝓, 𝟁), plus \sqrt, \sqrt, \sqrt (edges that are the ''characteristic radii'' of the regular tetrahedron). The 3-edge path along orthogonal edges of the orthoscheme is 1, \sqrt, \sqrt, first from a tetrahedron vertex to an tetrahedron edge center, then turning 90° to an tetrahedron face center, then turning 90° to the tetrahedron center. The orthoscheme has four dissimilar right triangle faces. The exterior face is a 60-90-30 triangle which is one-sixth of a tetrahedron face. The three faces interior to the tetrahedron are: a right triangle with edges 1, \sqrt, \sqrt, a right triangle with edges \sqrt, \sqrt, \sqrt, and a right triangle with edges \sqrt, \sqrt, \sqrt.


Space-filling tetrahedra

A space-filling tetrahedron packs with directly congruent or enantiomorphous (
mirror image A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substance ...
) copies of itself to tile space. The cube can be dissected into six 3-orthoschemes, three left-handed and three right-handed (one of each at each cube face), and cubes can fill space, so the characteristic 3-orthoscheme of the cube is a space-filling tetrahedron in this sense. A disphenoid can be a space-filling tetrahedron in the directly congruent sense, as in the
disphenoid tetrahedral honeycomb The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton ...
. Regular tetrahedra, however, cannot fill space by themselves.


Fundamental domains

An irregular tetrahedron which is the
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each o ...
of a
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
is an example of a Goursat tetrahedron. The Goursat tetrahedra generate all the regular polyhedra (and many other uniform polyhedra) by mirror reflections, a process referred to as Wythoff's kaleidoscopic construction. For polyhedra, Wythoff's construction arranges three mirrors at angles to each other, as in a kaleidoscope. Unlike a cylindrical kaleidoscope, Wythoff's mirrors are located at three faces of a Goursat tetrahedron such that all three mirrors intersect at a single point. Among the Goursat tetrahedra which generate 3-dimensional honeycombs we can recognize an orthoscheme (the characteristic tetrahedron of the cube), a double orthoscheme (the characteristic tetrahedron of the cube face-bonded to its mirror image), and the space-filling disphenoid illustrated above. The disphenoid is the double orthoscheme face-bonded to its mirror image (a quadruple orthoscheme). Thus all three of these Goursat tetrahedra, and all the polyhedra they generate by reflections, can be dissected into characteristic tetrahedra of the cube.


Isometries of irregular tetrahedra

The isometries of an irregular (unmarked) tetrahedron depend on the geometry of the tetrahedron, with 7 cases possible. In each case a 3-dimensional point group is formed. Two other isometries (C3, sup>+), and (S4, +,4+ can exist if the face or edge marking are included. Tetrahedral diagrams are included for each type below, with edges colored by isometric equivalence, and are gray colored for unique edges.


General properties


Volume

The volume of a tetrahedron is given by the pyramid volume formula: :V = \frac13 A_0\,h \, where ''A''0 is the area of the base and ''h'' is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of these faces. For a tetrahedron with vertices , , , and , the volume is , or any other combination of pairs of vertices that form a simply connected graph. This can be rewritten using a
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
and a
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
, yielding :V = \frac . If the origin of the coordinate system is chosen to coincide with vertex d, then d = 0, so :V = \frac , where a, b, and c represent three edges that meet at one vertex, and is a scalar triple product. Comparing this formula with that used to compute the volume of a
parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term '' rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclid ...
, we conclude that the volume of a tetrahedron is equal to of the volume of any parallelepiped that shares three converging edges with it. The absolute value of the scalar triple product can be represented as the following absolute values of determinants: :6 \cdot V =\begin \mathbf & \mathbf & \mathbf \endor6 \cdot V =\begin \mathbf \\ \mathbf \\ \mathbf \endwhere\begin\mathbf = (a_1,a_2,a_3), \\ \mathbf = (b_1,b_2,b_3), \\ \mathbf = (c_1,c_2,c_3), \endare expressed as row or column vectors. Hence :36 \cdot V^2 =\begin \mathbf & \mathbf \cdot \mathbf & \mathbf \cdot \mathbf \\ \mathbf \cdot \mathbf & \mathbf & \mathbf \cdot \mathbf \\ \mathbf \cdot \mathbf & \mathbf \cdot \mathbf & \mathbf \endwhere\begin\mathbf \cdot \mathbf = ab\cos, \\ \mathbf \cdot \mathbf = bc\cos, \\ \mathbf \cdot \mathbf = ac\cos. \end which gives :V = \frac \sqrt, \, where ''α'', ''β'', ''γ'' are the plane angles occurring in vertex d. The angle ''α'', is the angle between the two edges connecting the vertex d to the vertices b and c. The angle ''β'', does so for the vertices a and c, while ''γ'', is defined by the position of the vertices a and b. If we do not require that d = 0 then :6 \cdot V = \left, \det \left( \begin a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ 1 & 1 & 1 & 1 \end \right) \\,. Given the distances between the vertices of a tetrahedron the volume can be computed using the
Cayley–Menger determinant In linear algebra, geometry, and trigonometry, the Cayley–Menger determinant is a formula for the content, i.e. the higher-dimensional volume, of a n-dimensional simplex in terms of the squares of all of the distances between pairs of its v ...
: :288 \cdot V^2 = \begin 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & d_^2 & d_^2 & d_^2 \\ 1 & d_^2 & 0 & d_^2 & d_^2 \\ 1 & d_^2 & d_^2 & 0 & d_^2 \\ 1 & d_^2 & d_^2 & d_^2 & 0 \end where the subscripts represent the vertices and ''d'' is the pairwise distance between them – i.e., the length of the edge connecting the two vertices. A negative value of the determinant means that a tetrahedron cannot be constructed with the given distances. This formula, sometimes called Tartaglia's formula, is essentially due to the painter Piero della Francesca in the 15th century, as a three dimensional analogue of the 1st century Heron's formula for the area of a triangle. Let be three edges that meet at a point, and the opposite edges. Let be the volume of the tetrahedron; then :V=\frac where :\beginX&=b^2+c^2-x^2, \\ Y&=a^2+c^2-y^2, \\ Z&=a^2+b^2-z^2. \end The above formula uses six lengths of edges, and the following formula uses three lengths of edges and three angles. :V = \frac \sqrt


Heron-type formula for the volume of a tetrahedron

If , , , , , are lengths of edges of the tetrahedron (first three form a triangle; with opposite , opposite , opposite ), then : V = \frac where : \begin p & = \sqrt , & q & = \sqrt , & r & = \sqrt , & s & = \sqrt , \end : \begin X & = (w - U + v)\,(U + v + w), & x & = (U - v + w)\,(v - w + U), \\ Y & = (u - V + w)\,(V + w + u), & y & = (V - w + u)\,(w - u + V), \\ Z & = (v - W + u)\,(W + u + v), & z & = (W - u + v)\,(u - v + W). \end


Volume divider

Any plane containing a bimedian (connector of opposite edges' midpoints) of a tetrahedron bisects the volume of the tetrahedron.


Non-Euclidean volume

For tetrahedra in hyperbolic space or in three-dimensional
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
, the
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
s of the tetrahedron determine its shape and hence its volume. In these cases, the volume is given by the Murakami–Yano formula. However, in Euclidean space, scaling a tetrahedron changes its volume but not its dihedral angles, so no such formula can exist.


Distance between the edges

Any two opposite edges of a tetrahedron lie on two
skew lines In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the sa ...
, and the distance between the edges is defined as the distance between the two skew lines. Let ''d'' be the distance between the skew lines formed by opposite edges a and as calculated
here Here is an adverb that means "in, on, or at this place". It may also refer to: Software * Here Technologies, a mapping company * Here WeGo (formerly Here Maps), a mobile app and map website by Here Television * Here TV (formerly "here!"), a ...
. Then another volume formula is given by :V = \frac .


Properties analogous to those of a triangle

The tetrahedron has many properties analogous to those of a triangle, including an insphere, circumsphere, medial tetrahedron, and exspheres. It has respective centers such as incenter, circumcenter, excenters, Spieker center and points such as a centroid. However, there is generally no orthocenter in the sense of intersecting altitudes.
Gaspard Monge Gaspard Monge, Comte de Péluse (9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. During ...
found a center that exists in every tetrahedron, now known as the Monge point: the point where the six midplanes of a tetrahedron intersect. A midplane is defined as a plane that is orthogonal to an edge joining any two vertices that also contains the centroid of an opposite edge formed by joining the other two vertices. If the tetrahedron's altitudes do intersect, then the Monge point and the orthocenter coincide to give the class of
orthocentric tetrahedron In geometry, an orthocentric tetrahedron is a tetrahedron where all three pairs of opposite edges are perpendicular. It is also known as an orthogonal tetrahedron since orthogonal means perpendicular. It was first studied by Simon Lhuilier in 1782, ...
. An orthogonal line dropped from the Monge point to any face meets that face at the midpoint of the line segment between that face's orthocenter and the foot of the altitude dropped from the opposite vertex. A line segment joining a vertex of a tetrahedron with the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
of the opposite face is called a ''median'' and a line segment joining the midpoints of two opposite edges is called a ''bimedian'' of the tetrahedron. Hence there are four medians and three bimedians in a tetrahedron. These seven line segments are all concurrent at a point called the ''centroid'' of the tetrahedron. In addition the four medians are divided in a 3:1 ratio by the centroid (see Commandino's theorem). The centroid of a tetrahedron is the midpoint between its Monge point and circumcenter. These points define the ''Euler line'' of the tetrahedron that is analogous to the Euler line of a triangle. The
nine-point circle In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: * The midpoint of ea ...
of the general triangle has an analogue in the circumsphere of a tetrahedron's medial tetrahedron. It is the twelve-point sphere and besides the centroids of the four faces of the reference tetrahedron, it passes through four substitute ''Euler points'', one third of the way from the Monge point toward each of the four vertices. Finally it passes through the four base points of orthogonal lines dropped from each Euler point to the face not containing the vertex that generated the Euler point. The center ''T'' of the twelve-point sphere also lies on the Euler line. Unlike its triangular counterpart, this center lies one third of the way from the Monge point ''M'' towards the circumcenter. Also, an orthogonal line through ''T'' to a chosen face is coplanar with two other orthogonal lines to the same face. The first is an orthogonal line passing through the corresponding Euler point to the chosen face. The second is an orthogonal line passing through the centroid of the chosen face. This orthogonal line through the twelve-point center lies midway between the Euler point orthogonal line and the centroidal orthogonal line. Furthermore, for any face, the twelve-point center lies at the midpoint of the corresponding Euler point and the orthocenter for that face. The radius of the twelve-point sphere is one third of the circumradius of the reference tetrahedron. There is a relation among the angles made by the faces of a general tetrahedron given by :\begin -1 & \cos & \cos & \cos\\ \cos & -1 & \cos & \cos \\ \cos & \cos & -1 & \cos \\ \cos & \cos & \cos & -1 \\ \end = 0\, where ''α'' is the angle between the faces ''i'' and ''j''. The
geometric median In geometry, the geometric median of a discrete set of sample points in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances ...
of the vertex position coordinates of a tetrahedron and its isogonic center are associated, under circumstances analogous to those observed for a triangle.
Lorenz Lindelöf Lorenz is an originally German name derived from the Roman surname Laurentius, which means "from Laurentum". Given name People with the given name Lorenz include: * Prince Lorenz of Belgium (born 1955), member of the Belgian royal family by ...
found that, corresponding to any given tetrahedron is a point now known as an isogonic center, ''O'', at which the solid angles subtended by the faces are equal, having a common value of π sr, and at which the angles subtended by opposite edges are equal. A solid angle of π sr is one quarter of that subtended by all of space. When all the solid angles at the vertices of a tetrahedron are smaller than π sr, ''O'' lies inside the tetrahedron, and because the sum of distances from ''O'' to the vertices is a minimum, ''O'' coincides with the
geometric median In geometry, the geometric median of a discrete set of sample points in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances ...
, ''M'', of the vertices. In the event that the solid angle at one of the vertices, ''v'', measures exactly π sr, then ''O'' and ''M'' coincide with ''v''. If however, a tetrahedron has a vertex, ''v'', with solid angle greater than π sr, ''M'' still corresponds to ''v'', but ''O'' lies outside the tetrahedron.


Geometric relations

A tetrahedron is a 3-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
. Unlike the case of the other Platonic solids, all the vertices of a regular tetrahedron are equidistant from each other (they are the only possible arrangement of four equidistant points in 3-dimensional space). A tetrahedron is a triangular
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
, and the regular tetrahedron is
self-dual In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the ...
. A regular tetrahedron can be embedded inside a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
in two ways such that each vertex is a vertex of the cube, and each edge is a diagonal of one of the cube's faces. For one such embedding, the
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
of the vertices are :(+1, +1, +1); :(−1, −1, +1); :(−1, +1, −1); :(+1, −1, −1). This yields a tetrahedron with edge-length 2, centered at the origin. For the other tetrahedron (which is dual to the first), reverse all the signs. These two tetrahedra's vertices combined are the vertices of a cube, demonstrating that the regular tetrahedron is the 3- demicube. The volume of this tetrahedron is one-third the volume of the cube. Combining both tetrahedra gives a regular
polyhedral compound In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram. The outer vertices of a compound can be connec ...
called the compound of two tetrahedra or stella octangula. The interior of the stella octangula is an
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, and correspondingly, a regular octahedron is the result of cutting off, from a regular tetrahedron, four regular tetrahedra of half the linear size (i.e.,
rectifying A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inver ...
the tetrahedron). The above embedding divides the cube into five tetrahedra, one of which is regular. In fact, five is the minimum number of tetrahedra required to compose a cube. To see this, starting from a base tetrahedron with 4 vertices, each added tetrahedra adds at most 1 new vertex, so at least 4 more must be added to make a cube, which has 8 vertices. Inscribing tetrahedra inside the regular
compound of five cubes The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876. It is one of five regular compounds, and dual to the compound of five octahedra. It can be seen as a faceting of a regul ...
gives two more regular compounds, containing five and ten tetrahedra. Regular tetrahedra cannot tessellate space by themselves, although this result seems likely enough that
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ...
claimed it was possible. However, two regular tetrahedra can be combined with an octahedron, giving a rhombohedron that can tile space as the
tetrahedral-octahedral honeycomb The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2. Other names i ...
. However, several irregular tetrahedra are known, of which copies can tile space, for instance the characteristic orthoscheme of the cube and the
disphenoid In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same ...
of the
disphenoid tetrahedral honeycomb The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton ...
. The complete list remains an open problem. If one relaxes the requirement that the tetrahedra be all the same shape, one can tile space using only tetrahedra in many different ways. For example, one can divide an octahedron into four identical tetrahedra and combine them again with two regular ones. (As a side-note: these two kinds of tetrahedron have the same volume.) The tetrahedron is unique among the uniform polyhedra in possessing no parallel faces.


A law of sines for tetrahedra and the space of all shapes of tetrahedra

A corollary of the usual
law of sines In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\, 2R, where , and ar ...
is that in a tetrahedron with vertices ''O'', ''A'', ''B'', ''C'', we have :\sin\angle OAB\cdot\sin\angle OBC\cdot\sin\angle OCA = \sin\angle OAC\cdot\sin\angle OCB\cdot\sin\angle OBA.\, One may view the two sides of this identity as corresponding to clockwise and counterclockwise orientations of the surface. Putting any of the four vertices in the role of ''O'' yields four such identities, but at most three of them are independent: If the "clockwise" sides of three of them are multiplied and the product is inferred to be equal to the product of the "counterclockwise" sides of the same three identities, and then common factors are cancelled from both sides, the result is the fourth identity. Three angles are the angles of some triangle if and only if their sum is 180° (π radians). What condition on 12 angles is necessary and sufficient for them to be the 12 angles of some tetrahedron? Clearly the sum of the angles of any side of the tetrahedron must be 180°. Since there are four such triangles, there are four such constraints on sums of angles, and the number of
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
is thereby reduced from 12 to 8. The four relations given by this sine law further reduce the number of degrees of freedom, from 8 down to not 4 but 5, since the fourth constraint is not independent of the first three. Thus the space of all shapes of tetrahedra is 5-dimensional.


Law of cosines for tetrahedra

Let be the points of a tetrahedron. Let Δ''i'' be the area of the face opposite vertex ''Pi'' and let ''θij'' be the dihedral angle between the two faces of the tetrahedron adjacent to the edge ''PiPj''. The
law of cosines In trigonometry, the law of cosines (also known as the cosine formula, cosine rule, or al-Kashi's theorem) relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states ...
for this tetrahedron, which relates the areas of the faces of the tetrahedron to the dihedral angles about a vertex, is given by the following relation: : \Delta_i^2 = \Delta_j^2 + \Delta_k^2 + \Delta_l^2 - 2(\Delta_j\Delta_k\cos\theta_ + \Delta_j\Delta_l \cos\theta_ + \Delta_k\Delta_l \cos\theta_)


Interior point

Let ''P'' be any interior point of a tetrahedron of volume ''V'' for which the vertices are ''A'', ''B'', ''C'', and ''D'', and for which the areas of the opposite faces are ''F''a, ''F''b, ''F''c, and ''F''d. Then''Inequalities proposed in “
Crux Mathematicorum ''Crux Mathematicorum'' is a scientific journal of mathematics published by the Canadian Mathematical Society. It contains mathematical problems for secondary school and undergraduate students. , its editor-in-chief is Kseniya Garaschuk. The journ ...
”''

:PA \cdot F_\mathrm + PB \cdot F_\mathrm + PC \cdot F_\mathrm + PD \cdot F_\mathrm \geq 9V. For vertices ''A'', ''B'', ''C'', and ''D'', interior point ''P'', and feet ''J'', ''K'', ''L'', and ''M'' of the perpendiculars from ''P'' to the faces, and suppose the faces have equal areas, then :PA+PB+PC+PD \geq 3(PJ+PK+PL+PM).


Inradius

Denoting the inradius of a tetrahedron as ''r'' and the inradius, inradii of its triangular faces as ''r''''i'' for ''i'' = 1, 2, 3, 4, we have :\frac + \frac + \frac + \frac \leq \frac, with equality if and only if the tetrahedron is regular. If ''A''''1'', ''A''''2'', ''A''''3'' and ''A''''4'' denote the area of each faces, the value of ''r'' is given by :r=\frac. This formula is obtained from dividing the tetrahedron into four tetrahedra whose points are the three points of one of the original faces and the incenter. Since the four subtetrahedra fill the volume, we have V = \frac13A_1r+\frac13A_2r+\frac13A_3r+\frac13A_4r.


Circumradius

Denote the circumradius of a tetrahedron as ''R''. Let ''a'', ''b'', ''c'' be the lengths of the three edges that meet at a vertex, and ''A'', ''B'', ''C'' the length of the opposite edges. Let ''V'' be the volume of the tetrahedron. Then :R=\frac.


Circumcenter

The circumcenter of a tetrahedron can be found as intersection of three bisector planes. A bisector plane is defined as the plane centered on, and orthogonal to an edge of the tetrahedron. With this definition, the circumcenter of a tetrahedron with vertices ,,, can be formulated as matrix-vector product: :\begin C &= A^B & \text & \ & A = \left(\begin\left _1 - x_0\rightT \\ \left _2 - x_0\rightT \\ \left _3 - x_0\rightT \end\right) & \ & \text & \ & B = \frac\left(\begin \, x_1\, ^2 - \, x_0\, ^2 \\ \, x_2\, ^2 - \, x_0\, ^2 \\ \, x_3\, ^2 - \, x_0\, ^2 \end\right) \\ \end In contrast to the centroid, the circumcenter may not always lay on the inside of a tetrahedron. Analogously to an obtuse triangle, the circumcenter is outside of the object for an obtuse tetrahedron.


Centroid

The tetrahedron's center of mass computes as the
arithmetic mean In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the '' mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The co ...
of its four vertices, see
Centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
.


Faces

The sum of the areas of any three faces is greater than the area of the fourth face.


Integer tetrahedra

There exist tetrahedra having integer-valued edge lengths, face areas and volume. These are called Heronian tetrahedra. One example has one edge of 896, the opposite edge of 990 and the other four edges of 1073; two faces are
isosceles triangle In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter versio ...
s with areas of and the other two are isosceles with areas of , while the volume is . A tetrahedron can have integer volume and consecutive integers as edges, an example being the one with edges 6, 7, 8, 9, 10, and 11 and volume 48.
Wacław Sierpiński Wacław Franciszek Sierpiński (; 14 March 1882 – 21 October 1969) was a Polish mathematician. He was known for contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions, and to ...
, ''
Pythagorean Triangles ''Pythagorean Triangles'' is a book on right triangles, the Pythagorean theorem, and Pythagorean triples. It was originally written in the Polish language by Wacław Sierpiński (titled ''Trójkąty pitagorejskie''), and published in Warsaw in 1 ...
'', Dover Publications, 2003 (orig. ed. 1962), p. 107. Note however that Sierpiński repeats an erroneous calculation of the volume of the Heronian tetrahedron example above.


Related polyhedra and compounds

A regular tetrahedron can be seen as a triangular
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
. A regular tetrahedron can be seen as a degenerate polyhedron, a uniform ''digonal
antiprism In geometry, an antiprism or is a polyhedron composed of two parallel direct copies (not mirror images) of an polygon, connected by an alternating band of triangles. They are represented by the Conway notation . Antiprisms are a subclass o ...
'', where base polygons are reduced
digon In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
s. A regular tetrahedron can be seen as a degenerate polyhedron, a uniform dual ''digonal
trapezohedron In geometry, an trapezohedron, -trapezohedron, -antidipyramid, -antibipyramid, or -deltohedron is the dual polyhedron of an antiprism. The faces of an are congruent and symmetrically staggered; they are called ''twisted kites''. With a hi ...
'', containing 6 vertices, in two sets of colinear edges. A truncation process applied to the tetrahedron produces a series of uniform polyhedra. Truncating edges down to points produces the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
as a rectified tetrahedron. The process completes as a birectification, reducing the original faces down to points, and producing the self-dual tetrahedron once again. This polyhedron is topologically related as a part of sequence of regular polyhedra with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mo ...
s , continuing into the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
. The tetrahedron is topologically related to a series of regular polyhedra and tilings with order-3
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s. Image:CubeAndStel.svg, Two tetrahedra in a cube Image:Compound of five tetrahedra.png, Compound of five tetrahedra Image:Compound of ten tetrahedra.png,
Compound of ten tetrahedra The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876. It can be seen as a ...
An interesting polyhedron can be constructed from five intersecting tetrahedra. This compound of five tetrahedra has been known for hundreds of years. It comes up regularly in the world of
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a f ...
. Joining the twenty vertices would form a regular dodecahedron. There are both
left-handed In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subject ...
and
right-handed In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
forms, which are
mirror image A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substance ...
s of each other. Superimposing both forms gives a
compound of ten tetrahedra The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876. It can be seen as a ...
, in which the ten tetrahedra are arranged as five pairs of stellae octangulae. A stella octangula is a compound of two tetrahedra in dual position and its eight vertices define a cube as their convex hull. The square hosohedron is another polyhedron with four faces, but it does not have triangular faces. The
Szilassi polyhedron In geometry, the Szilassi polyhedron is a nonconvex polyhedron, topologically a torus, with seven hexagonal faces. Coloring and symmetry The 14 vertices and 21 edges of the Szilassi polyhedron form an embedding of the Heawood graph onto th ...
and the tetrahedron are the only two known polyhedra in which each face shares an edge with each other face. Furthermore, the
Császár polyhedron In geometry, the Császár polyhedron () is a nonconvex toroidal polyhedron with 14 triangular faces. This polyhedron has no diagonals; every pair of vertices is connected by an edge. The seven vertices and 21 edges of the Császár polyhedron ...
(itself is the dual of Szilassi polyhedron) and the tetrahedron are the only two known polyhedra in which every diagonal lies on the sides.


Applications


Numerical analysis

In
numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ...
, complicated three-dimensional shapes are commonly broken down into, or approximated by, a polygonal mesh of irregular
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
in the process of setting up the equations for
finite element analysis The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat ...
especially in the
numerical solution Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
of
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
. These methods have wide applications in practical applications in
computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate ...
,
aerodynamics Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dy ...
,
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical ...
s,
civil engineering Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, airports, sewa ...
,
chemical engineering Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials in ...
, naval architecture and engineering, and related fields.


Structural engineering

A tetrahedron having stiff edges is inherently rigid. For this reason it is often used to stiffen frame structures such as spaceframes.


Aviation

At some
airfield An aerodrome (Commonwealth English) or airdrome (American English) is a location from which aircraft flight operations take place, regardless of whether they involve air cargo, passengers, or neither, and regardless of whether it is for publ ...
s, a large frame in the shape of a tetrahedron with two sides covered with a thin material is mounted on a rotating pivot and always points into the wind. It is built big enough to be seen from the air and is sometimes illuminated. Its purpose is to serve as a reference to pilots indicating wind direction.


Chemistry

The tetrahedron shape is seen in nature in covalently bonded molecules. All sp3-hybridized atoms are surrounded by atoms (or lone electron pairs) at the four corners of a tetrahedron. For instance in a
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
molecule () or an
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaterna ...
ion (), four hydrogen atoms surround a central carbon or nitrogen atom with tetrahedral symmetry. For this reason, one of the leading journals in organic chemistry is called ''
Tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
''. The
central angle A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc le ...
between any two vertices of a perfect tetrahedron is arccos(−), or approximately 109.47°.
Water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
, , also has a tetrahedral structure, with two hydrogen atoms and two lone pairs of electrons around the central oxygen atoms. Its tetrahedral symmetry is not perfect, however, because the lone pairs repel more than the single O–H bonds. Quaternary
phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous ...
s of mixtures of chemical substances are represented graphically as tetrahedra. However, quaternary phase diagrams in
communication engineering Telecommunications Engineering is a subfield of electrical engineering which seeks to design and devise systems of communication at a distance. The work ranges from basic circuit design to strategic mass developments. A telecommunication enginee ...
are represented graphically on a two-dimensional plane.


Electricity and electronics

If six equal
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
s are
solder Solder (; NA: ) is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable ...
ed together to form a tetrahedron, then the resistance measured between any two vertices is half that of one resistor. Since
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
is the most common
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
used in
solid-state electronics Solid-state electronics means semiconductor electronics: electronic equipment using semiconductor devices such as transistors, diodes and integrated circuits (ICs). The term is also used as an adjective for devices in which semiconductor electr ...
, and silicon has a valence of four, the tetrahedral shape of the four chemical bonds in silicon is a strong influence on how
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s of silicon form and what shapes they assume.


Color space

Tetrahedra are used in color space conversion algorithms specifically for cases in which the luminance axis diagonally segments the color space (e.g. RGB, CMY).


Games

The
Royal Game of Ur The Royal Game of Ur is a two-player strategy race board game of the tables family that was first played in ancient Mesopotamia during the early third millennium BC. The game was popular across the Middle East among people of all social stra ...
, dating from 2600 BC, was played with a set of tetrahedral dice. Especially in roleplaying, this solid is known as a 4-sided die, one of the more common
polyhedral dice Dice (singular die or dice) are small, throwable objects with marked sides that can rest in multiple positions. They are used for generating random values, commonly as part of tabletop games, including dice games, board games, role-playing ga ...
, with the number rolled appearing around the bottom or on the top vertex. Some
Rubik's Cube The Rubik's Cube is a Three-dimensional space, 3-D combination puzzle originally invented in 1974 by Hungarians, Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the Magic Cube, the puzzle was licensed by Rubik t ...
-like puzzles are tetrahedral, such as the Pyraminx and Pyramorphix.


Geology

The
tetrahedral hypothesis The tetrahedral hypothesis is an obsolete scientific theory attempting to explain the arrangement of the Earth's continents and oceans by referring to the geometry of a tetrahedron. Although it was a historically interesting theory in the late 19th ...
, originally published by
William Lowthian Green William Lowthian Green (13 September 1819 – 7 December 1890) was an English adventurer and merchant who later became cabinet minister in the Kingdom of Hawaii. As an amateur geologist, he published a theory of the formation of the earth calle ...
to explain the formation of the Earth, was popular through the early 20th century.


Popular culture

Stanley Kubrick Stanley Kubrick (; July 26, 1928 – March 7, 1999) was an American film director, producer, screenwriter, and photographer. Widely considered one of the greatest filmmakers of all time, his films, almost all of which are adaptations of nove ...
originally intended the
monolith A monolith is a geological feature consisting of a single massive stone or rock, such as some mountains. For instance, Savandurga mountain is a monolith mountain in India. Erosion usually exposes the geological formations, which are often ma ...
in '' 2001: A Space Odyssey'' to be a tetrahedron, according to
Marvin Minsky Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive and computer scientist concerned largely with research of artificial intelligence (AI), co-founder of the Massachusetts Institute of Technology's AI laboratory ...
, a cognitive scientist and expert on
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech ...
who advised Kubrick on the
HAL 9000 HAL 9000 is a fictional artificial intelligence character and the main antagonist in Arthur C. Clarke's ''Space Odyssey'' series. First appearing in the 1968 film '' 2001: A Space Odyssey'', HAL ( Heuristically programmed ALgorithmic computer ...
computer and other aspects of the movie. Kubrick scrapped the idea of using the tetrahedron as a visitor who saw footage of it did not recognize what it was and he did not want anything in the movie regular people did not understand.


Tetrahedral graph

The
skeleton A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...
of the tetrahedron (comprising the vertices and edges) forms a graph, with 4 vertices, and 6 edges. It is a special case of the
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
, K4, and wheel graph, W4. It is one of 5 Platonic graphs, each a skeleton of its
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
.


See also

* Boerdijk–Coxeter helix * Möbius configuration *
Caltrop A caltrop (also known as caltrap, galtrop, cheval trap, galthrap, galtrap, calthrop, jackrock or crow's foot''Battle of Alesia'' (Caesar's conquest of Gaul in 52 BC), Battlefield Detectives program, (2006), rebroadcast: 2008-09-08 on History Cha ...
* Demihypercube and
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
– ''n''-dimensional analogues *
Pentachoron In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
– 4-dimensional analogue * Synergetics (Fuller) * Tetrahedral kite * Tetrahedral number *
Tetrahedron packing In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedron, tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space. Currently, the best lower bound achieved on the optima ...
* Triangular dipyramid – constructed by joining two tetrahedra along one face * Trirectangular tetrahedron * Orthoscheme


Notes


References


Bibliography

* *


External links

*
Free paper models of a tetrahedron and many other polyhedra


that also includes a description of a "rotating ring of tetrahedra", also known as a kaleidocycle. {{Authority control Deltahedra Platonic solids Individual graphs Self-dual polyhedra Prismatoid polyhedra Pyramids and bipyramids