Terraforming of Venus
   HOME

TheInfoList



OR:

The terraforming of Venus or the terraformation of Venus is the
hypothetical A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous obser ...
process of engineering the global environment of the planet
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
in such a way as to make it suitable for human habitation.
Terraforming Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make ...
Venus was first proposed in a scholarly context by the astronomer Carl Sagan in 1961, although fictional treatments, such as ''The Big Rain'' of
The Psychotechnic League The Psychotechnic League is a future history created by American science fiction writer Poul Anderson. The name "Psychotechnic League" was invented by Sandra Miesel during the early 1980s, to capitalize on Anderson's better-known Polesotechnic Lea ...
by novelist
Poul Anderson Poul William Anderson (November 25, 1926 – July 31, 2001) was an American fantasy and science fiction author who was active from the 1940s until the 21st century. Anderson wrote also historical novels. His awards include seven Hugo Awards and ...
, preceded it. Adjustments to the existing environment of Venus to support human life would require at least three major changes to the planet's atmosphere: # Reducing Venus's surface temperature of # Eliminating most of the planet's dense
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and sulfur dioxide atmosphere via removal or conversion to some other form # The addition of breathable
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
to the atmosphere. These three changes are closely interrelated because Venus's extreme temperature is due to the high pressure of its dense atmosphere and the
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
.


History

Prior to the early 1960s, the atmosphere of Venus was believed by many astronomers to have an Earth-like temperature. When Venus was understood to have a thick
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
atmosphere with a consequence of a very large
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
, some scientists began to contemplate the idea of altering the atmosphere to make the surface more Earth-like. This hypothetical prospect, known as
terraforming Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make ...
, was first proposed by Carl Sagan in 1961, as a final section of his classic article in the journal ''
Science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
'' discussing the atmosphere and greenhouse effect of Venus. Sagan proposed injecting photosynthetic bacteria into the Venus atmosphere, which would convert the carbon dioxide into reduced carbon in organic form, thus reducing the carbon dioxide from the atmosphere. Unfortunately, the knowledge of Venus's atmosphere was still inexact in 1961, when Sagan made his original proposal for terraforming. Thirty-three years after his original proposal, in his 1994 book ''
Pale Blue Dot ''Pale Blue Dot'' is a photograph of planet Earth taken on February 14, 1990, by the ''Voyager 1'' space probe from a record distance of about kilometers ( miles, 40.5 AU), as part of that day's ''Family Portrait'' series of images of the ...
'', Sagan conceded his original proposal for terraforming would not work because the atmosphere of Venus is far denser than was known in 1961:
"Here's the fatal flaw: In 1961, I thought the atmospheric pressure at the surface of Venus was a few bars ... We now know it to be 90 bars, so if the scheme worked, the result would be a surface buried in hundreds of meters of fine graphite, and an atmosphere made of 65 bars of almost pure molecular oxygen. Whether we would first implode under the atmospheric pressure or spontaneously burst into flames in all that oxygen is open to question. However, long before so much oxygen could build up, the graphite would spontaneously burn back into CO2, short-circuiting the process."
Following Sagan's paper, there was little scientific discussion of the concept until a resurgence of interest in the 1980s.Berry, Adrian (1984) "Venus, The Hell-World," and "Making it Rain in Hell," Chapters 6 & 7 in ''The Next Ten Thousand Years'', New American Library.


Proposed approaches to terraforming

A number of approaches to terraforming are reviewed by Martyn J. Fogg (1995) and by Geoffrey A. Landis (2011).


Eliminating the dense carbon dioxide atmosphere

The main problem with Venus today, from a terraformation standpoint, is the very thick carbon dioxide atmosphere. The ground level pressure of Venus is . This also, through the greenhouse effect, causes the temperature on the surface to be several hundred degrees too hot for any significant organisms. Therefore, all approaches to the terraforming of Venus include somehow removing almost all the carbon dioxide in the atmosphere.


Biological approaches

The method proposed in 1961 by Carl Sagan involves the use of
genetically engineered Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including t ...
algae to fix carbon into
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. T ...
s. Although this method is still proposed in discussions of Venus terraforming, later discoveries showed that biological means alone would not be successful. Difficulties include the fact that the production of organic molecules from carbon dioxide requires hydrogen, which is very rare on Venus. Because Venus lacks a protective magnetosphere, the upper atmosphere is exposed to direct erosion by the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
and has lost most of its original hydrogen to space. And, as Sagan noted, any carbon that was bound up in organic molecules would quickly be converted to carbon dioxide again by the hot surface environment. Venus would not begin to cool down until after most of the carbon dioxide had already been removed. Although it is generally conceded that Venus could not be terraformed by introduction of photosynthetic biota alone, use of photosynthetic organisms to produce oxygen in the atmosphere continues to be a component of other proposed methods of terraforming.


Capture in carbonates

On Earth nearly all carbon is sequestered in the form of
carbonate minerals Carbonate minerals are those minerals containing the carbonate ion, . Carbonate divisions Anhydrous carbonates *Calcite group: trigonal **Calcite CaCO3 **Gaspéite (Ni,Mg,Fe2+)CO3 **Magnesite MgCO3 **Otavite CdCO3 **Rhodochrosite MnCO3 **Sider ...
or in different stages of the
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major componen ...
, while very little is present in the atmosphere in the form of carbon dioxide. On Venus, the situation is the opposite. Much of the carbon is present in the atmosphere, while comparatively little is sequestered in the lithosphere. Many approaches to terraforming therefore focus on getting rid of carbon dioxide by chemical reactions trapping and stabilising it in the form of carbonate minerals. Modelling by astrobiologists Mark Bullock and David Grinspoon of Venus's atmospheric evolution suggests that the equilibrium between the current 92-bar atmosphere and existing surface minerals, particularly calcium and magnesium oxides, is quite unstable, and that the latter could serve as a sink of carbon dioxide and sulfur dioxide through conversion to carbonates. If these surface minerals were fully converted and saturated, then the atmospheric pressure would decline and the planet would cool somewhat. One of the possible end states modelled by Bullock and Grinspoon was a atmosphere and surface temperature. To convert the rest of the carbon dioxide in the atmosphere, a larger portion of the crust would have to be artificially exposed to the atmosphere to allow more extensive carbonate conversion. In 1989, Alexander G. Smith proposed that Venus could be terraformed by lithosphere overturn, allowing crust to be converted into carbonates. Landis 2011 calculated that it would require the involvement of the entire surface crust down to a depth of over 1 km to produce enough rock surface area to convert enough of the atmosphere. Natural formation of
carbonate rock Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolosto ...
from minerals and carbon dioxide is a very slow process. Recent research into sequestering carbon dioxide into carbonate minerals in the context of mitigating global warming on Earth however points out that this process can be considerably accelerated (from hundreds or thousands of years to just 75 days) through the use of catalysts such as polystyrene microspheres. It could therefore be theorised that similar technologies might also be used in the context of terraformation on Venus. It can also be noted that the chemical reaction that converts minerals and carbon dioxide into carbonates is exothermic, in essence producing more energy than is consumed by the reaction. This opens up the possibility of creating self-reinforcing conversion processes with potential for exponential growth of the conversion rate until most of the atmospheric carbon dioxide can be converted. Bombardment of Venus with refined
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
from off-world could also sequester carbon dioxide in the form of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
and magnesium carbonates. About 8 kg of calcium or 5 kg of magnesium would be required to convert all the carbon dioxide in the atmosphere, which would entail a great deal of mining and mineral refining (perhaps on Mercury which is notably mineral rich). 8 kg is a few times the mass of the asteroid
4 Vesta Vesta ( minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta, t ...
(more than in diameter).


Injection into volcanic basalt rock

Research projects in
Iceland Iceland ( is, Ísland; ) is a Nordic island country in the North Atlantic Ocean and in the Arctic Ocean. Iceland is the most sparsely populated country in Europe. Iceland's capital and largest city is Reykjavík, which (along with its s ...
and the US state of
Washington Washington commonly refers to: * Washington (state), United States * Washington, D.C., the capital of the United States ** A metonym for the federal government of the United States ** Washington metropolitan area, the metropolitan area centered o ...
have shown that potentially large amounts of carbon dioxide could be removed from the atmosphere by high-pressure injection into subsurface porous basalt formations, where carbon dioxide is rapidly transformed into solid inert minerals. Other studies predict that one cubic meter of porous basalt has the potential to sequester 47 kilograms of injected carbon dioxide. According to these estimates a volume of about 9.86 × 109 km3 of basalt rock would be needed to sequester all the carbon dioxide in the Venusian atmosphere. This is equal to the entire crust of Venus down to a depth of about 21.4 kilometers. Another study concluded that under optimal conditions, on average, 1 cubic meter of basalt rock can sequester 260 kg of carbon dioxide. Venus's crust appears to be thick and the planet is dominated by volcanic features. The surface is about 90%
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
, and about 65% consists of a mosaic of volcanic
lava Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or un ...
plains. There should therefore be ample volumes of basalt rock strata on the planet with very promising potential for carbon dioxide sequestration. Research has also demonstrated that under the high temperature and high pressure conditions in the mantle,
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
, the most abundant mineral in the mantle (on Earth and probably also on Venus) can form carbonates that are stable under these conditions. This opens up the possibility of carbon dioxide sequestration in the mantle.


Introduction of hydrogen

According to Birch, bombarding Venus with hydrogen and reacting it with carbon dioxide could produce elemental carbon (
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
) and water by the
Bosch reaction The Bosch reaction is a catalytic chemical reaction between carbon dioxide (CO2) and hydrogen (H2) that produces elemental carbon (C, graphite), water, and a 10% return of invested heat. CO2 is usually reduced by H2 to carbon in presence of ...
. It would take about 4 × 1019 kg of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
to convert the whole Venusian atmosphere, and such a large amount of hydrogen could be obtained from the
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
s or their moons' ice. Another possible source of hydrogen could be somehow extracting it from possible reservoirs in the interior of the planet itself. According to some researchers, the Earth's mantle and/or core might hold large quantities of hydrogen left there since the original formation of Earth from the nebular cloud. Since the original formation and inner structure of Earth and Venus are generally believed to be somewhat similar, the same might be true for Venus. Iron aerosol in the atmosphere will also be required for the reaction to work, and iron can come from Mercury, asteroids, or the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
. (Loss of hydrogen due to the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
is unlikely to be significant on the timescale of terraforming.) Due to the planet's relatively flat surface, this water would cover about 80% of the surface, compared to 70% for Earth, even though it would amount to only roughly 10% of the water found on Earth. The remaining atmosphere, at around 3 bars (about three times that of Earth), would mainly be composed of nitrogen, some of which will dissolve into the new oceans of water, reducing atmospheric pressure in accordance with
Henry's law In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulate ...
. To further reduce the pressure even more, nitrogen could also be fixated into nitrates. Futurist
Isaac Arthur Isaac Albert Arthur (born September 20, 1980) is a science communication, YouTuber and futurist. He is best known as producer of his YouTube channel, ''Science & Futurism With Isaac Arthur'' (''SFIA''), where he discusses a broad variety of topi ...
has suggested using the hypothesized processes of starlifting and stellasing to create a particle beam of ionized hydrogen from the sun, tentatively dubbed a "hydro-cannon". This device could be used both to thin the dense atmosphere of Venus, but also to introduce hydrogen to react with carbon dioxide to create water, thereby further lowering the atmospheric pressure.


Direct removal of atmosphere

The thinning of the Venusian atmosphere could be attempted by a variety of methods, possibly in combination. Directly lifting atmospheric gas from Venus into space would probably prove difficult. Venus has sufficiently high escape velocity to make blasting it away with asteroid impacts impractical. Pollack and Sagan calculated in 1994 that an impactor of 700 km diameter striking Venus at greater than 20 km/s, would eject all the atmosphere above the horizon as seen from the point of impact, but because this is less than a thousandth of the total atmosphere and there would be diminishing returns as the atmosphere's density decreases, a very great number of such giant impactors would be required. Landis calculated Paper AIAA-2011-7215, AIAA Space 2011 Conference & Exposition, Long Beach CA, Sept. 26–29, 2011. that to lower the pressure from 92 bar to 1 bar would require a minimum of 2,000 impacts, even if the efficiency of atmosphere removal was perfect. Smaller objects would not work, either, because more would be required. The violence of the bombardment could well result in significant outgassing that would replace removed atmosphere. Most of the ejected atmosphere would go into solar orbit near Venus, and, without further intervention, could be captured by the Venerian gravitational field and become part of the atmosphere once again. Another variant method involving bombardment would be to perturb a massive Kuiper belt object to put its orbit onto a collision path with Venus. If the object, made of mostly ices, had enough velocity to penetrate just a few kilometers past the Venusian surface, the resulting forces from the vaporization of ice from the impactor and the impact itself could stir the lithosphere and mantle thus ejecting a proportional amount of matter (as magma and gas) from Venus. A byproduct of this method would be either a new moon for Venus or a new impactor-body of debris that would fall back to the surface at a later time. Removal of atmospheric gas in a more controlled manner could also prove difficult. Venus's extremely slow rotation means that
space elevator A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable (also called a space tethe ...
s would be very difficult to construct because the planet's geostationary orbit lies an impractical distance above the surface, and the very thick atmosphere to be removed makes
mass driver A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. Existing and contemplated mass drivers use coils of wire energized by e ...
s useless for removing payloads from the planet's surface. Possible workarounds include placing
mass driver A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. Existing and contemplated mass drivers use coils of wire energized by e ...
s on high-altitude balloons or balloon-supported towers extending above the bulk of the atmosphere, using
space fountain A space fountain is a proposed form of an extremely tall tower extending into space. As known materials cannot support a static tower with this height, a space fountain has to be an active structure: A stream of pellets is accelerated upwards f ...
s, or rotovators. In addition, if the density of the atmosphere (and corresponding greenhouse effect) were dramatically reduced, the surface temperature (now effectively constant) would probably vary widely between day side and night side. Another side effect to atmospheric-density reduction could be the creation of zones of dramatic weather activity or storms at the terminator because large volumes of atmosphere would undergo rapid heating or cooling.


Cooling planet by solar shades

Venus receives about twice the sunlight that Earth does, which is thought to have contributed to its
runaway greenhouse effect A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A ...
. One means of terraforming Venus could involve reducing the insolation at Venus's surface to prevent the planet from heating up again.


Space-based

Solar shades could be used to reduce the total insolation received by Venus, cooling the planet somewhat. A shade placed in the Sun–Venus Lagrangian point also would serve to block the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
, removing the radiation exposure problem on Venus. A suitably large solar shade would be four times the diameter of Venus itself if at the point. This would necessitate construction in space. There would also be the difficulty of balancing a thin-film shade perpendicular to the Sun's rays at the Sun–Venus Lagrangian point with the incoming
radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
, which would tend to turn the shade into a huge solar sail. If the shade were simply left at the point, the pressure would add force to the sunward side and the shade would accelerate and drift out of orbit. The shade could instead be positioned nearer to the Sun, using the solar pressure to balance the gravitational forces, in practice becoming a
statite A statite (from the words ''static'' and ''satellite'') is a hypothetical type of artificial satellite that employs a solar sail to continuously modify its orbit in ways that gravity alone would not allow. Typically, a statite would use the solar sa ...
. Other modifications to the solar shade design have also been suggested to solve the solar-sail problem. One suggested method is to use polar-orbiting, solar-synchronous mirrors that reflect light toward the back of the sunshade, from the non-sunward side of Venus. Photon pressure would push the support mirrors to an angle of 30 degrees away from the sunward side. Paul Birch proposed a slatted system of mirrors near the point between Venus and the Sun. The shade's panels would not be perpendicular to the Sun's rays, but instead at an angle of 30 degrees, such that the reflected light would strike the next panel, negating the photon pressure. Each successive row of panels would be +/- 1 degree off the 30-degree deflection angle, causing the reflected light to be skewed 4 degrees from striking Venus. Solar shades could also serve as solar power generators. Space-based solar shade techniques, and thin-film solar sails in general, are only in an early stage of development. The vast sizes require a quantity of material that is many orders of magnitude greater than any human-made object that has ever been brought into space or constructed in space.


Atmospheric or surface-based

Venus could also be cooled by placing reflectors in the atmosphere. Reflective balloons floating in the upper atmosphere could create shade. The number and/or size of the balloons would necessarily be great. Geoffrey A. Landis has suggested that if enough floating cities were built, they could form a solar shield around the planet, and could simultaneously be used to process the atmosphere into a more desirable form, thus combining the solar shield theory and the atmospheric processing theory with a scalable technology that would immediately provide living space in the Venusian atmosphere. If made from carbon nanotubes or
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
(a sheet-like carbon allotrope), then the major structural materials can be produced using carbon dioxide gathered ''in situ'' from the atmosphere. The recently synthesised amorphous carbonia might prove a useful structural material if it can be quenched to Standard Temperature and Pressure (STP) conditions, perhaps in a mixture with regular
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
glass. According to Birch's analysis, such colonies and materials would provide an immediate economic return from colonizing Venus, funding further terraforming efforts. Increasing the planet's
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
by deploying light-colored or reflective material on the surface (or at any level below the cloud tops) would not be useful, because the Venerian surface is already completely enshrouded by clouds, and almost no sunlight reaches the surface. Thus, it would be unlikely to be able to reflect more light than Venus's already-reflective clouds, with
Bond albedo The Bond albedo (or ''spheric albedo'' or ''planetary albedo'' or ''bolometric albedo''), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic ra ...
of 0.77.


Combination of solar shades and atmospheric condensation

Birch proposed that solar shades could be used to not merely cool the planet but to also reduce atmospheric pressure as well, by the process of freezing of the carbon dioxide. This requires Venus's temperature to be reduced, first to the liquefaction point, requiring a temperature less than ( or ) and partial pressures of CO2 to bring the atmospheric pressure down to (
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
's critical point); and from there reducing the temperature below ( or ) (carbon dioxide's
triple point In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at which the sub ...
). Below that temperature, freezing of atmospheric carbon dioxide into
dry ice Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and sublimates directly from the solid state to the gas state. It is used primarily ...
will cause it to deposit onto the surface. He then proposed that the frozen CO2 could be buried and maintained in that condition by pressure, or even shipped off-world (perhaps to provide greenhouse gas needed for
terraforming Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make ...
of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
or the moons of
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
). After this process was complete, the shades could be removed or solettas added, allowing the planet to partially warm again to temperatures comfortable for Earth life. A source of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
or
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
would still be needed, and some of the remaining 3.5 bar of atmospheric
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
would need to be fixed into the soil. Birch suggests disrupting an icy moon of Saturn, for example Hyperion, and bombarding Venus with its fragments.


Cooling planet by heat pipes, atmospheric vortex engines or radiative cooling

Paul Birch suggests that, in addition to cooling the planet with a sunshade in L1, "heat pipes" could be built on the planet to accelerate the cooling. The proposed mechanism would transport heat from the surface to colder regions higher up in the atmosphere, similar to a
solar updraft tower The solar updraft tower (SUT) is a design concept for a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding t ...
, thereby facilitating radiation of excess heat out into space. A newly proposed variation of this technology is the atmospheric
vortex engine The concept of a vortex engine or atmospheric vortex engine (AVE), independently proposed by Norman Louat and Louis M. Michaud, aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure. The AVE i ...
, where instead of physical chimney pipes, the atmospheric updraft is achieved through the creation of a vortex, similar to a stationary tornado. In addition to this method being less material intensive and potentially more cost effective, this process also produces a net surplus of energy, which could be utilised to power venusian colonies or other aspects of the terraforming effort, while simultaneously contributing to speeding up the cooling of the planet. Another method to cool down the planet could be with the use of
radiative cooling In the study of heat transfer, radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation. Radiative cooling ...
This technology could utilise the fact that in certain wavelengths,
thermal radiation Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) i ...
from the lower atmosphere of Venus can "escape" to space through partially transparent atmospheric “windows” – spectral gaps between strong CO2 and H2O absorption bands in the near
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
range . The outgoing thermal radiation is wavelength dependent and varies from the very surface at to approximately at .
Nanophotonics Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. ...
and construction of
metamaterials A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
opens up new possibilities to tailor the emittance spectrum of a surface via properly designing periodic nano/micro-structures. Recently there has been proposals of a device named a "emissive energy harvester" that can transfer heat to space through radiative cooling and convert part of the heat flow into surplus energy, opening up possibilities of a self-replicating system that could exponentially cool the planet.


Introduction of water

Since Venus has only a fraction of the water of Earth (less than half the Earth's water content in the atmosphere, and none on the surface), water would have to be introduced either by the aforementioned method of introduction of hydrogen, or from some other intraplanetary or extraplanetary source.


Capture the Ice Moons

Paul Birch suggests the possibility of colliding Venus with one of the ice moons from the outer solar system, thereby bringing in all the water needed for terraformation in one go. This could be achieved through gravity assisted capture of Saturn's moons
Enceladus Enceladus is the sixth-largest moon of Saturn (19th largest in the Solar System). It is about in diameter, about a tenth of that of Saturn's largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most refle ...
and Hyperion or the Uranian moon Miranda. Simply changing the velocity of these moons enough to move them from their current orbit and enable gravity-assisted transport to Venus would require large amounts of energy. However, through complex gravity-assisted chain reactions the propulsion requirements could be reduced by several orders of magnitude. As Birch puts it, " eoretically one could flick a pebble into the asteroid belt and end up dumping Mars into the Sun."


Outgassing from the mantle

Studies have shown that substantial amounts of water (in the form of hydrogen) might be present in the mantle of terrestrial planets. It has therefore been speculated that it would be technically possible to extract this water from the mantle to the surface even if no feasible method to accomplish this exists currently.


Altering day–night cycle

Venus rotates once every 243 Earth days—by far the slowest rotation period of any known object in the Solar System. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a
solar day A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is ...
on Venus is significantly shorter than the
sidereal day Sidereal time (as a unit also sidereal day or sidereal rotation period) (sidereal ) is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coor ...
; to an observer on the surface of Venus, the time from one sunrise to the next would be 116.75 days. Therefore, the slow Venerian rotation rate would result in extremely long days and nights, similar to the day-night cycles in the polar regions of earth — shorter, but global. The slow rotation might also account for the lack of a significant magnetic field.


Arguments for keeping the current day-night cycle unchanged

It has until recently been assumed that the rotation rate or day-night cycle of Venus would have to be increased for successful terraformation to be achieved. More recent research has shown, however, that the current slow rotation rate of Venus is not at all detrimental to the planet's capability to support an Earth-like climate. Rather, the slow rotation rate would, given an Earth-like atmosphere, enable the formation of thick cloud layers on the side of the planet facing the sun. This in turn would raise planetary albedo and act to cool the global temperature to Earth-like levels, despite the greater proximity to the Sun. According to calculations, maximum temperatures would be just around 35 °C (95 °F), given an Earth-like atmosphere. Speeding up the rotation rate would therefore be both impractical and detrimental to the terraforming effort. A terraformed Venus with the current slow rotation would result in a global climate with "day" and "night" periods each roughly 2 months (58 days) long, resembling the seasons at higher latitudes on Earth. The "day" would resemble a short summer with a warm, humid climate, a heavy overcast sky and ample rainfall. The "night" would resemble a short, very dark winter with quite cold temperature and snowfall. There would be periods with more temperate climate and clear weather at sunrise and sunset resembling a "spring" and "autumn".


Space mirrors

The problem of very dark conditions during the roughly two-month long "night" period could be solved through the use of a space mirror in a 24-hour orbit (the same distance as a geostationary orbit on Earth) similar to the Znamya (satellite) project experiments. Extrapolating the numbers from those experiments and applying them to Venerian conditions would mean that a space mirror just under 1700 meters in diameter could illuminate the entire nightside of the planet with the luminosity of 10-20
full moon The full moon is the lunar phase when the Moon appears fully illuminated from Earth's perspective. This occurs when Earth is located between the Sun and the Moon (when the ecliptic longitudes of the Sun and Moon differ by 180°). This means ...
s and create an artificial 24-hour light cycle. An even bigger mirror could potentially create even stronger illumination conditions. Further extrapolation suggests that to achieve illumination levels of about 400 lux (similar to normal office lighting or a sunrise on a clear day on earth) a circular mirror about 55 kilometers across would be needed. Paul Birch suggested keeping the entire planet protected from sunlight by a permanent system of slated shades in L1, and the surface illuminated by a rotating soletta mirror in a
polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of about ...
, which would produce a 24-hour light cycle.


Changing rotation speed

If increasing the rotation speed of the planet would be desired (despite the above-mentioned potentially positive climatic effects of the current rotational speed), it would require energy of a magnitude many orders greater than the construction of orbiting solar mirrors, or even than the removal of the Venerian atmosphere. Birch calculates that increasing the rotation of Venus to an Earth-like solar cycle would require about 1.6 × 1029 Joules (50 billion petawatt-hours). Scientific research suggests that close flybys of asteroids or cometary bodies larger than 100 kilometres (60 mi) across could be used to move a planet in its orbit, or increase the speed of rotation. The energy required to do this is large. In his book on terraforming, one of the concepts Fogg discusses is to increase the spin of Venus using three quadrillion objects circulating between Venus and the Sun every 2 hours, each traveling at 10% of the speed of light. G. David Nordley has suggested, in fiction, that Venus might be spun up to a day length of 30 Earth days by exporting the atmosphere of Venus into space via
mass driver A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. Existing and contemplated mass drivers use coils of wire energized by e ...
s. A proposal by Birch involves the use of dynamic compression members to transfer energy and momentum via high-velocity mass streams to a band around the equator of Venus. He calculated that a sufficiently high-velocity mass stream, at about 10% of the speed of light, could give Venus a day of 24 hours in 30 years.


Creating an artificial magnetosphere

Protecting the new atmosphere from the solar wind, to avoid the loss of hydrogen, would require an artificial magnetosphere. Venus presently lacks an intrinsic magnetic field, therefore creating an artificial planetary magnetic field is needed to form a magnetosphere via its interaction with the solar wind. According to two NIFS Japanese scientists, it is feasible to do that with current technology by building a system of refrigerated latitudinal superconducting rings, each carrying a sufficient amount of
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or eve ...
. In the same report, it is claimed that the economic impact of the system can be minimized by using it also as a planetary energy transfer and storage system (SMES). Another study proposes the possibility of deployment of a
magnetic dipole In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric ...
shield at the L1 Lagrange point, thereby creating an artificial magnetosphere that would protect the whole planet from solar wind and radiation.


See also

*
Terraforming Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make ...
*
Colonization of Venus The colonization of Venus has been a subject of many works of science fiction since before the dawn of spaceflight, and is still discussed from both a fictional and a scientific standpoint. However, with the discovery of Venus's extremely hostil ...
*
Terraforming of Mars The terraforming of Mars or the terraformation of Mars is a hypothetical procedure that would consist of a planetary engineering project or concurrent projects, with the goal of transforming Mars from a planet hostile to terrestrial life to on ...
*
Space sunshade A space sunshade or sunshield is a parasol that diverts or otherwise reduces some of the Sun's radiation, preventing it from hitting a spacecraft or planet and thereby reducing its insolation, which results in reduced heating. Light can be di ...


References


External links


Visualizing the steps of solar system terraforming

A fictional account of the terraformation of Venus

Terraform Venus (discussion on the New Mars forum)

Terraforming Venus - The Latest Thinking (discussion on the New Mars forum)
{{DEFAULTSORT:Terraforming Of Venus Planetary engineering Space colonization Venus *Venus