Inorganic chemistry
   HOME

TheInfoList



OR:

Inorganic chemistry deals with
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry * Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors **Organic synthesis, the chemical synthesis of organ ...
and behavior of inorganic and organometallic compounds. This field covers
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s that are not carbon-based, which are the subjects of
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
, materials science,
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s,
surfactant Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsion#Emulsifiers , ...
s,
coating A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Pow ...
s, medications,
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy b ...
s, and
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people ...
.


Key concepts

Many
inorganic compound In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemis ...
s are ionic compounds, consisting of cations and
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s joined by ionic bonding. Examples of salts (which are ionic compounds) are magnesium chloride MgCl2, which consists of
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
cations Mg2+ and
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride s ...
anions Cl; or
sodium oxide Sodium oxide is a chemical compound with the formula Na2 O. It is used in ceramics and glasses. It is a white solid but the compound is rarely encountered. Instead "sodium oxide" is used to describe components of various materials such as gla ...
Na2O, which consists of
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
cations Na+ and
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
anions O2−. In any salt, the proportions of the ions are such that the electric charges cancel out, so that the bulk compound is electrically neutral. The ions are described by their
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
and their ease of formation can be inferred from the ionization potential (for cations) or from the electron affinity (anions) of the parent elements. The strength of a bond in ionic compounds is known as
lattice energy In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bin ...
. It can be defined as the heat released when ions of opposite charge in the gas phase to combine into an ionic solid. For example, if we take a
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
atom and combined them Na+(g) + Cl- (g)-> NaCl(s) we would get \Delta H = -787.3kJ/mol, because this number is negative we would have an exothermic reaction, if this number was positive it would be an
endothermic reaction In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).''Principle of Modern Chemistry'', Brooks Cole. ...
. Another way of describing lattice energy is the energy required to separate one mole of an ionic solid into a gas, this is the reverse of the previous description. It is not possible to determine these values experimentally due to the number of conditions that could influence the reaction but it can be estimated using the
Born–Haber cycle The Born–Haber cycle is an approach to analyze reaction energies. It was named after the two German scientists Max Born and Fritz Haber, who developed it in 1919. It was also independently formulated by Kasimir Fajans and published concurrently ...
Important classes of inorganic compounds are the
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s, the
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
s, the sulfates, and the
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a flu ...
s. Many inorganic compounds are characterized by high
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
s. Inorganic salts typically are poor conductors in the solid state but rise slightly while molten. Other important features include their high melting point and ease of
crystallization Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposi ...
. Where some salts (e.g., NaCl) are very soluble in water, others (e.g., FeS) are not. The simplest inorganic reaction is
double displacement A salt metathesis reaction, sometimes called a double displacement reaction, is a chemical process involving the exchange of bonds between two reacting chemical species which results in the creation of products with similar or identical bonding ...
when in mixing of two salts the ions are swapped without a change in oxidation state. In redox reactions one reactant, the ''oxidant'', lowers its oxidation state and another reactant, the ''reductant'', has its oxidation state increased. The net result is an exchange of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s. Electron exchange can occur indirectly as well, e.g., in
batteries Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
, a key concept in
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an out ...
. When one reactant contains hydrogen atoms, a reaction can take place by exchanging protons in acid-base chemistry. In a more general definition, any chemical species capable of binding to electron pairs is called a Lewis acid; conversely any molecule that tends to donate an electron pair is referred to as a
Lewis base A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
. As a refinement of acid-base interactions, the HSAB theory takes into account polarizability and size of ions. Inorganic compounds are found in nature as
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
s. Soil may contain iron sulfide as
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
or calcium sulfate as
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywa ...
. Inorganic compounds are also found multitasking as biomolecules: as electrolytes (
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35. ...
), in energy storage ( ATP) or in construction (the polyphosphate backbone in DNA). The first important man-made inorganic compound was ammonium nitrate for soil fertilization through the Haber process. Inorganic compounds are synthesized for use as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s such as
vanadium(V) oxide Vanadium(V) oxide (''vanadia'') is the inorganic compound with the formula V2 O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because ...
and titanium(III) chloride, or as reagents in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
such as
lithium aluminium hydride Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li Al H4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic ...
. Subdivisions of inorganic chemistry are organometallic chemistry,
cluster chemistry In chemistry, an atom cluster (or simply cluster) is an ensemble of bound atoms or molecules that is intermediate in size between a simple molecule and a nanoparticle; that is, up to a few nanometers (nm) in diameter. The term ''microclus ...
and bioinorganic chemistry. These fields are active areas of research in inorganic chemistry, aimed toward new
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s, superconductors, and therapies.


Industrial inorganic chemistry

Inorganic chemistry is a highly practical area of science. Traditionally, the scale of a nation's economy could be evaluated by their productivity of sulfuric acid. The manufacturing of fertilizers, which often begins with the Haber-Bosch process, is another practical application of industrial inorganic chemistry.


Descriptive inorganic chemistry

Descriptive inorganic chemistry focuses on the classification of compounds based on their properties. Partly the classification focuses on the position in the periodic table of the heaviest element (the element with the highest atomic weight) in the compound, partly by grouping compounds by their structural similarities.


Coordination compounds

Classical coordination compounds feature metals bound to "
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC '' Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. L ...
s" of electrons residing on the main group atoms of ligands such as H2O, NH3, Cl, and CN. In modern coordination compounds almost all organic and inorganic compounds can be used as ligands. The "metal" usually is a metal from the groups 3–13, as well as the ''trans''-
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
s and ''trans''-
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s, but from a certain perspective, all chemical compounds can be described as coordination complexes. The stereochemistry of coordination complexes can be quite rich, as hinted at by Werner's separation of two enantiomers of [Co((OH)2Co(NH3)4)3sup>6+, an early demonstration that chirality is not inherent to organic compounds. A topical theme within this specialization is supramolecular coordination chemistry. * Examples: o(EDTA).html"_;"title="EDTA.html"_;"title="o(EDTA">o(EDTA)">EDTA.html"_;"title="o(EDTA">o(EDTA)sup>−,_Cobalt(III)_hexammine_chloride.html" ;"title="EDTA">o(EDTA).html" ;"title="EDTA.html" ;"title="o(EDTA">o(EDTA)">EDTA.html" ;"title="o(EDTA">o(EDTA)sup>−, Cobalt(III) hexammine chloride"> o(NH3)6sup>3+, Titanium tetrachloride, TiCl4(THF)2.


Main group compounds

These species feature elements from Periodic table group, groups I, II, III, IV, V,VI, VII, 0 (excluding hydrogen) of the periodic table. Due to their often similar reactivity, the elements in group 3 ( Sc, Y, and La) and group 12 ( Zn, Cd, and Hg) are also generally included, and the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
s and
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s are sometimes included as well. Main group compounds have been known since the beginnings of chemistry, e.g., elemental
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
and the distillable white
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
. Experiments on oxygen, O2, by Lavoisier and Priestley not only identified an important diatomic gas, but opened the way for describing compounds and reactions according to stoichiometric ratios. The discovery of a practical synthesis of
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
using iron catalysts by Carl Bosch and Fritz Haber in the early 1900s deeply impacted mankind, demonstrating the significance of inorganic chemical synthesis. Typical main group compounds are SiO2, SnCl4, and N2O. Many main group compounds can also be classed as "organometallic", as they contain organic groups, e.g., B( CH3)3). Main group compounds also occur in nature, e.g.,
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
in DNA, and therefore may be classed as bioinorganic. Conversely, organic compounds lacking (many) hydrogen ligands can be classed as "inorganic", such as the fullerenes, buckytubes and binary carbon oxides. * Examples: tetrasulfur tetranitride S4N4, diborane B2H6,
silicone A silicone or polysiloxane is a polymer made up of siloxane (−R2Si−O−SiR2−, where R = organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cookin ...
s, buckminsterfullerene C60.


Noble gas compounds

Noble gases are elements which have filled valence electron shells in their neutral state, and are thus stable as lone atoms. Historically known as being inert, methods were discovered to react with them. The trend within the group is for the larger elements to be more reactive.
Xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
and
krypton Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is of ...
are more easily ionized, and can combine with extremely
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
elements to make fluorides and oxides and form solid ionic compounds.
Argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice a ...
, neon, and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
are much less reactive, though in cosmochemistry ArH+ has been observed spectroscopically in interstellar gas. Noble gases can also be trapped in solids while not being directly coordinated in
clathrates A clathrate is a chemical substance consisting of a lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin (), meaning ‘with bars, latticed’. Most clathrate compounds are polymeric and completely envel ...
or in
endohedral fullerene Endohedral fullerenes, also called endofullerenes, are fullerenes that have additional atoms, ions, or clusters enclosed within their inner spheres. The first lanthanum C60 complex called La@C60 was synthesized in 1985. The @ (at sign) in the ...
s. * Examples: xenon hexafluoride XeF6,
xenon trioxide Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic ma ...
XeO3, krypton difluoride KrF2, argon fluorohydride HArF


Transition metal compounds

Compounds containing metals from group 4 to 11 are considered transition metal compounds. Compounds with a metal from group 3 or 12 are sometimes also incorporated into this group, but also often classified as main group compounds. Transition metal compounds show a rich coordination chemistry, varying from tetrahedral for titanium (e.g., TiCl4) to square planar for some nickel complexes to octahedral for coordination complexes of cobalt. A range of transition metals can be found in biologically important compounds, such as iron in hemoglobin. * Examples: iron pentacarbonyl,
titanium tetrachloride Titanium tetrachloride is the inorganic compound with the formula . It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. is a volatile liquid. Upon contact with humid air, it forms thick clouds ...
, cisplatin


Organometallic compounds

Usually, organometallic compounds are considered to contain the M-C-H group. The metal (M) in these species can either be a main group element or a transition metal. Operationally, the definition of an organometallic compound is more relaxed to include also highly lipophilic complexes such as metal carbonyls and even metal alkoxides. Organometallic compounds are mainly considered a special category because organic ligands are often sensitive to hydrolysis or oxidation, necessitating that organometallic chemistry employs more specialized preparative methods than was traditional in Werner-type complexes. Synthetic methodology, especially the ability to manipulate complexes in solvents of low coordinating power, enabled the exploration of very weakly coordinating ligands such as hydrocarbons, H2, and N2. Because the ligands are petrochemicals in some sense, the area of organometallic chemistry has greatly benefited from its relevance to industry. * Examples:
Cyclopentadienyliron dicarbonyl dimer Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula ''η''5-C5H5)Fe(CO)2sub>2, often abbreviated to Cp2Fe2(CO)4, pFe(CO)2sub>2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crysta ...
(C5H5)Fe(CO)2CH3, ferrocene Fe(C5H5)2,
molybdenum hexacarbonyl Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium and tungsten analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero ...
Mo(CO)6, triethylborane Et3B, Tris(dibenzylideneacetone)dipalladium(0) Pd2(dba)3)


Cluster compounds

Clusters can be found in all classes of chemical compounds. According to the commonly accepted definition, a cluster consists minimally of a triangular set of atoms that are directly bonded to each other. But metal-metal bonded dimetallic complexes are highly relevant to the area. Clusters occur in "pure" inorganic systems, organometallic chemistry, main group chemistry, and bioinorganic chemistry. The distinction between very large clusters and bulk solids is increasingly blurred. This interface is the chemical basis of nanoscience or
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
and specifically arise from the study of
quantum size effects Mesoscopic physics is a subdiscipline of condensed matter physics that deals with materials of an intermediate size. These materials range in size between the nanoscale for a quantity of atoms (such as a molecule) and of materials measuring mic ...
in cadmium selenide clusters. Thus, large clusters can be described as an array of bound atoms intermediate in character between a molecule and a solid. * Examples: Fe3(CO)12, B10H14, o6Cl14sup>2−,
4Fe-4S Iron–sulfur proteins (or iron–sulphur proteins in British spelling) are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur cl ...


Bioinorganic compounds

By definition, these compounds occur in nature, but the subfield includes anthropogenic species, such as pollutants (e.g.,
methylmercury Methylmercury (sometimes methyl mercury) is an organometallic cation with the formula . It is the simplest organomercury compound. Methylmercury is extremely toxic, and its derivatives are the major source of organic mercury for humans. It i ...
) and drugs (e.g., Cisplatin). The field, which incorporates many aspects of biochemistry, includes many kinds of compounds, e.g., the phosphates in DNA, and also metal complexes containing ligands that range from biological macromolecules, commonly
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s, to ill-defined species such as humic acid, and to
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(e.g., coordinated to gadolinium complexes employed for MRI). Traditionally bioinorganic chemistry focuses on electron- and energy-transfer in proteins relevant to respiration. Medicinal inorganic chemistry includes the study of both non-essential and essential elements with applications to diagnosis and therapies. * Examples:
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythroc ...
,
methylmercury Methylmercury (sometimes methyl mercury) is an organometallic cation with the formula . It is the simplest organomercury compound. Methylmercury is extremely toxic, and its derivatives are the major source of organic mercury for humans. It i ...
,
carboxypeptidase A carboxypeptidase ( EC number 3.4.16 - 3.4.18) is a protease enzyme that hydrolyzes (cleaves) a peptide bond at the carboxy-terminal (C-terminal) end of a protein or peptide. This is in contrast to an aminopeptidases, which cleave peptide b ...


Solid state compounds

This important area focuses on
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
, bonding, and the physical properties of materials. In practice, solid state inorganic chemistry uses techniques such as crystallography to gain an understanding of the properties that result from collective interactions between the subunits of the solid. Included in solid state chemistry are metals and their
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
s or intermetallic derivatives. Related fields are condensed matter physics,
mineralogy Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the proce ...
, and materials science. * Examples:
silicon chips An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tin ...
, zeolites, YBa2Cu3O7


Theoretical inorganic chemistry

An alternative perspective on the area of inorganic chemistry begins with the Bohr model of the atom and, using the tools and models of theoretical chemistry and computational chemistry, expands into bonding in simple and then more complicated molecules. Precise quantum mechanical descriptions for multielectron species, the province of inorganic chemistry, is difficult. This challenge has spawned many semi-quantitative or semi-empirical approaches including
molecular orbital theory In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. In molecular orbital theory, electrons in a molec ...
and ligand field theory, In parallel with these theoretical descriptions, approximate methodologies are employed, including density functional theory. Exceptions to theories, qualitative and quantitative, are extremely important in the development of the field. For example, CuII2(OAc)4(H2O)2 is almost diamagnetic below room temperature whereas
crystal field theory Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
predicts that the molecule would have two unpaired electrons. The disagreement between qualitative theory (paramagnetic) and observation (diamagnetic) led to the development of models for magnetic coupling, such as the exchange interaction. These improved models led to the development of new magnetic materials and new technologies.


Qualitative theories

Inorganic chemistry has greatly benefited from qualitative theories. Such theories are easier to learn as they require little background in quantum theory. Within main group compounds, VSEPR theory powerfully predicts, or at least rationalizes, the structures of main group compounds, such as an explanation for why NH3 is pyramidal whereas ClF3 is T-shaped. For the transition metals,
crystal field theory Crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually ''d'' or ''f'' orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used ...
allows one to understand the magnetism of many simple complexes, such as why eIII(CN)6sup>3− has only one unpaired electron, whereas eIII(H2O)6sup>3+ has five. A particularly powerful qualitative approach to assessing the structure and reactivity begins with classifying molecules according to
electron counting Electron counting is a formalism used for classifying compounds and for explaining or predicting electronic structure and bonding. Many rules in chemistry rely on electron-counting: * Octet rule is used with Lewis structures for main group eleme ...
, focusing on the numbers of valence electrons, usually at the central atom in a molecule.


Molecular symmetry group theory

A central construct in inorganic chemistry is the theory of molecular symmetry. Mathematical
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
provides the language to describe the shapes of molecules according to their point group symmetry. Group theory also enables factoring and simplification of theoretical calculations. Spectroscopic features are analyzed and described with respect to the symmetry properties of the, ''inter alia'', vibrational or electronic states. Knowledge of the symmetry properties of the ground and excited states allows one to predict the numbers and intensities of absorptions in vibrational and electronic spectra. A classic application of group theory is the prediction of the number of C-O vibrations in substituted metal carbonyl complexes. The most common applications of symmetry to spectroscopy involve vibrational and electronic spectra. Group theory highlights commonalities and differences in the bonding of otherwise disparate species. For example, the metal-based orbitals transform identically for WF6 and W(CO)6, but the energies and populations of these orbitals differ significantly. A similar relationship exists CO2 and molecular beryllium difluoride.


Thermodynamics and inorganic chemistry

An alternative quantitative approach to inorganic chemistry focuses on energies of reactions. This approach is highly traditional and
empirical Empirical evidence for a proposition is evidence, i.e. what supports or counters this proposition, that is constituted by or accessible to sense experience or experimental procedure. Empirical evidence is of central importance to the sciences and ...
, but it is also useful. Broad concepts that are couched in thermodynamic terms include redox potential, acidity, phase changes. A classic concept in inorganic thermodynamics is the
Born–Haber cycle The Born–Haber cycle is an approach to analyze reaction energies. It was named after the two German scientists Max Born and Fritz Haber, who developed it in 1919. It was also independently formulated by Kasimir Fajans and published concurrently ...
, which is used for assessing the energies of elementary processes such as electron affinity, some of which cannot be observed directly.


Mechanistic inorganic chemistry

An important aspect of inorganic chemistry focuses on reaction pathways, i.e.
reaction mechanism In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage o ...
s.


Main group elements and lanthanides

The mechanisms of main group compounds of groups 13-18 are usually discussed in the context of organic chemistry (organic compounds are main group compounds, after all). Elements heavier than C, N, O, and F often form compounds with more electrons than predicted by the octet rule, as explained in the article on hypervalent molecules. The mechanisms of their reactions differ from organic compounds for this reason. Elements lighter than
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
( B, Be, Li) as well as Al and Mg often form electron-deficient structures that are electronically akin to
carbocation A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium , methanium and vinyl cations. Occasionally, carbocations that bear more than one positively charged carbon atom are also encount ...
s. Such electron-deficient species tend to react via associative pathways. The chemistry of the lanthanides mirrors many aspects of chemistry seen for aluminium.


Transition metal complexes

Transition metal and main group compounds often react differently. The important role of d-orbitals in bonding strongly influences the pathways and rates of ligand substitution and dissociation. These themes are covered in articles on
coordination chemistry A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Man ...
and
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
. Both associative and dissociative pathways are observed. An overarching aspect of mechanistic transition metal chemistry is the kinetic lability of the complex illustrated by the exchange of free and bound water in the prototypical complexes (H2O)6sup>n+: : (H2O)6sup>n+ + 6 H2O* → (H2O*)6sup>n+ + 6 H2O :where H2O* denotes isotopically enriched water, e.g., H217O The rates of water exchange varies by 20 orders of magnitude across the periodic table, with lanthanide complexes at one extreme and Ir(III) species being the slowest.


Redox reactions

Redox reactions are prevalent for the transition elements. Two classes of redox reaction are considered: atom-transfer reactions, such as oxidative addition/reductive elimination, and
electron-transfer Electron transfer (ET) occurs when an electron relocates from an atom or molecule to another such chemical entity. ET is a mechanistic description of certain kinds of redox reactions involving transfer of electrons. Electrochemical processe ...
. A fundamental redox reaction is "self-exchange", which involves the degenerate reaction between an oxidant and a reductant. For example,
permanganate A permanganate () is a chemical compound containing the manganate(VII) ion, , the conjugate base of permanganic acid. Because the manganese atom is in the +7 oxidation state, the permanganate(VII) ion is a strong oxidizing agent. The ion is a ...
and its one-electron reduced relative manganate exchange one electron: : nO4sup>− + n*O4sup>2− → nO4sup>2− + n*O4sup>−


Reactions at ligands

Coordinated ligands display reactivity distinct from the free ligands. For example, the acidity of the ammonia ligands in o(NH3)6sup>3+ is elevated relative to NH3 itself. Alkenes bound to metal cations are reactive toward nucleophiles whereas alkenes normally are not. The large and industrially important area of
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
hinges on the ability of metals to modify the reactivity of organic ligands. Homogeneous catalysis occurs in solution and heterogeneous catalysis occurs when gaseous or dissolved substrates interact with surfaces of solids. Traditionally homogeneous catalysis is considered part of organometallic chemistry and heterogeneous catalysis is discussed in the context of
surface science Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid– liquid interfaces, solid– gas interfaces, solid–vacuum interfaces, and liquid– gas interfaces. It includes th ...
, a subfield of solid state chemistry. But the basic inorganic chemical principles are the same. Transition metals, almost uniquely, react with small molecules such as CO, H2, O2, and C2H4. The industrial significance of these feedstocks drives the active area of catalysis. Ligands can also undergo ligand transfer reactions such as transmetalation.


Characterization of inorganic compounds

Because of the diverse range of elements and the correspondingly diverse properties of the resulting derivatives, inorganic chemistry is closely associated with many methods of analysis. Older methods tended to examine bulk properties such as the electrical conductivity of solutions,
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
s,
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
, and acidity. With the advent of quantum theory and the corresponding expansion of electronic apparatus, new tools have been introduced to probe the electronic properties of inorganic molecules and solids. Often these measurements provide insights relevant to theoretical models. Commonly encountered techniques are: *
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
: This technique allows for the 3D determination of molecular structures. * Dual polarisation interferometer: This technique measures the conformation and
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
of molecules. * Various forms of
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
: ** Ultraviolet-visible spectroscopy: Historically, this has been an important tool, since many inorganic compounds are strongly colored **
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fi ...
: Besides 1H and 13C many other NMR-active nuclei (e.g., 11B, 19F, 31P, and 195Pt) can give important information on compound properties and structure. The NMR of paramagnetic species can provide important structural information. Proton ( 1H) NMR is also important because the light hydrogen nucleus is not easily detected by X-ray crystallography. **
Infrared spectroscopy Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functi ...
: Mostly for absorptions from carbonyl ligands ** Electron nuclear double resonance (ENDOR) spectroscopy ** Mössbauer spectroscopy ** Electron-spin resonance: ESR (or EPR) allows for the measurement of the environment of paramagnetic metal centres. *
Electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an out ...
:
Cyclic voltammetry Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is r ...
and related techniques probe the redox characteristics of compounds.


Synthetic inorganic chemistry

Although some inorganic species can be obtained in pure form from nature, most are synthesized in chemical plants and in the laboratory. Inorganic synthetic methods can be classified roughly according to the volatility or solubility of the component reactants. Soluble inorganic compounds are prepared using methods of
organic synthesis Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one o ...
. For metal-containing compounds that are reactive toward air, Schlenk line and glove box techniques are followed. Volatile compounds and gases are manipulated in "vacuum manifolds" consisting of glass piping interconnected through valves, the entirety of which can be evacuated to 0.001 mm Hg or less. Compounds are condensed using
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wid ...
(b.p. 78K) or other cryogens. Solids are typically prepared using tube furnaces, the reactants and products being sealed in containers, often made of fused silica (amorphous SiO2) but sometimes more specialized materials such as welded Ta tubes or Pt "boats". Products and reactants are transported between temperature zones to drive reactions.


See also

* Important publications in inorganic chemistry


References

{{Authority control