TI Advanced Scientific Computer
   HOME

TheInfoList



OR:

The Advanced Scientific Computer (ASC) is a
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructio ...
designed and manufactured by
Texas Instruments Texas Instruments Incorporated (TI) is an American technology company headquartered in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globa ...
(TI) between 1966 and 1973. The ASC's
central processing unit A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, a ...
(CPU) supported vector processing, a performance-enhancing technique which was key to its high-performance. The ASC, along with the
Control Data Corporation Control Data Corporation (CDC) was a mainframe and supercomputer firm. CDC was one of the nine major United States computer companies through most of the 1960s; the others were IBM, Burroughs Corporation, DEC, NCR, General Electric, Honeywe ...
STAR-100 supercomputer (which was introduced in the same year), were the first computers to feature vector processing. However, this technique's potential was not fully realized by either the ASC or STAR-100 due to an insufficient understanding of the technique; it was the
Cray Research Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed ...
Cray-1 The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, over 100 Cray-1s were sold, making it one of the ...
supercomputer, announced in 1975 that would fully realize and popularize vector processing. The more successful implementation of vector processing in the Cray-1 would demarcate the ASC (and STAR-100) as first-generation vector processors, with the Cray-1 belonging in the second.


History

TI began as a division of
Geophysical Service Incorporated Geophysical Service Inc. (often abbreviated GSI) was founded by John Clarence Karcher and Eugene McDermott in 1930 for the purpose of using refraction and reflection seismology to explore for petroleum deposits. History On December 6, 1941, th ...
(GSI), a company that performed
seismic Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other ...
surveys for
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth using petroleum geology. Exploration methods Vis ...
companies. GSI was now a subsidiary of TI, and TI wanted to apply the latest computer technology to the processing and analysis of seismic datasets. The ASC project started as the ''Advanced Seismic Computer''. As the project developed, TI decided to expand its scope. "Seismic" was replaced by "Scientific" in the name, allowing the project to retain the designation ASC. Originally the software, including an
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
and a FORTRAN compiler, were done under contract by Computer Usage Company, under direction of George R. Trimble, Jr. but later taken over by TI itself. Southern Methodist University in Dallas developed an ALGOL compiler for the ASC.


Architecture

The ASC was based around a single high-speed shared memory, which was accessed by the CPU and eight
I/O channel In computing, channel I/O is a high-performance input/output (I/O) architecture that is implemented in various forms on a number of computer architectures, especially on mainframe computers. In the past, channels were generally implemented with cu ...
controllers, in an organization similar to
Seymour Cray Seymour Roger Cray (September 28, 1925 – October 5, 1996
) was an American
CDC 6600 The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM ...
. Memory was accessed solely under the control of the memory control unit (MCU). The MCU was a two-way, 256-bit per channel parallel network that could support up to eight independent processors, with a ninth channel for accessing "main memory" (referred to as "extended memory"). The MCU also acted as a cache controller, offering high-speed access to a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
-based memory for the eight processor ports, and handling all communications to the 24-bit address space in main memory. The MCU was designed to operate asynchronously, allowing it to work at a variety of speeds and scale across a number of performance points. For instance, main memory could be constructed out of slower but less expensive
core memory Core or cores may refer to: Science and technology * Core (anatomy), everything except the appendages * Core (manufacturing), used in casting and molding * Core (optical fiber), the signal-carrying portion of an optical fiber * Core, the centra ...
, although this was not used in practice. At the fastest, it could sustain transfer rates of 80 million 32-bit words per second per port, for a total transfer rate of 640 million words per second. This was well beyond the capabilities of even the fastest memories of the era. The CPU had a 60 ns clock cycle (16.67 MHz clock frequency) and its logic was built from 20-
gate A gate or gateway is a point of entry to or from a space enclosed by walls. The word derived from old Norse "gat" meaning road or path; But other terms include ''yett and port''. The concept originally referred to the gap or hole in the wall ...
emitter-coupled logic
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s originally developed by TI for the
ILLIAC IV The ILLIAC IV was the first massively parallel computer. The system was originally designed to have 256 64-bit floating point units (FPUs) and four central processing units (CPUs) able to process 1 billion operations per second. Due to budget cons ...
supercomputer. The CPU had an extremely advanced architecture and organization for its era, supporting
microcode In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a la ...
d arithmetic and mathematical instructions that operated on scalars, vectors, or matrices. The vector processing facilities had a memory-to-memory architecture; where the vector operands were read from, and the resulting vector written to, memory. The CPU could be have one, two, or four vector lanes, allowing the CPU to produce one to four vector results every cycle, depending on the number of vector lanes installed. The vector lanes were also used for scalar instructions, and each lane could keep up to 12 scalar instructions in-flight simultaneously. The CPU, with four lanes, allowed up to 36 instructions in total across the entire CPU. The processor had forty-eight 32-bit registers, a huge number for the time. 16 of the registers were used for addressing, 16 for scalar operations, 8 for index offsets, and 8 for specifying the various parameters for vector instructions. Data was moved between the registers and memory by load/store instructions, which could transfer from 4–64 bits (two registers) at a time. Most
vector processor In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data calle ...
s tended to be memory bandwidth-limited, that is, they could process data faster than they could get it from memory. This remains a major problem on modern SIMD designs as well, which is why considerable effort has been put into increasing memory throughput in modern computer designs (although largely unsuccessfully). In the ASC this was improved somewhat with a lookahead unit that predicted upcoming memory accesses and loaded them into the scalar registers invisibly, using a memory interface in the CPU called the memory buffer unit (MBU). The "Peripheral Processor" was a separate system dedicated entirely to quickly running the
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
and programs running within it, as well as feeding data to the CPU. The PP was built out of eight "virtual processors" (VPs), which were designed to handle instructions and basic integer arithmetic only. Each VP had its own
program counter The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, i ...
and registers, and the system could thus run eight programs at the same time, limited only by memory accesses. Keeping eight programs running allowed the system to shuffle execution of programs on the CPU depending on what data was available on the memory bus at that time, minimizing "dead time" where the CPU had to wait for data from the memory. The PP also included a set of sixty-four 32-bit communications registers (CRs). The CRs stored the state required for communication between the various parts of the ASC: the CPU, VPs, and channel controllers. The ASC instruction set include a bit-reverse instruction that was intended to speed up the calculation of
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in ...
s (FFTs). By the time the ASC was in production, better FFT algorithms had been developed that did not require this operation. TI offered a bounty to the first person to come up with a valid use for this instruction, but was never collected.


Market reception

When ASC machines first became available in the early 1970s, they outperformed almost all other machines, including the CDC STAR-100, and under certain conditions matched that of the one-off
ILLIAC IV The ILLIAC IV was the first massively parallel computer. The system was originally designed to have 256 64-bit floating point units (FPUs) and four central processing units (CPUs) able to process 1 billion operations per second. Due to budget cons ...
. However, only seven had been installed when the
Cray-1 The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, over 100 Cray-1s were sold, making it one of the ...
was announced in 1975. The Cray-1 dedicated almost all of its design to sustained high-speed access to memory, including over one million 64-bit words of semiconductor memory and a cycle time that was one-fifth that of the ASC (12.5 ns). Although the ASC was in some ways a more expandable design, in the supercomputer market speed is preferred, and the Cray-1 was much faster. ASC sales ended almost overnight, and although an upgraded ASC had been designed with a cycle time one-fifth that of the original, Texas Instruments decided to exit the market.


Vector processing applications

The ASC #1 prototype was a one pipe system and brought up in Austin, Texas, off site from TI's main plant for proprietary information reasons. It was later upgraded to two pipes and renamed as ASC # 1A. It was then used by TI's GSI division for seismic data processing. ASC #2 was leased to Shell Oil Company in the Netherlands and also used for seismic data processing. ASC #3 was installed at the Redstone Arsenal in Huntsville, Alabama, for Anti Ballistic Missile Interception technology development. With the SALT Treaty, the system was later redeployed to the Army Corps of Engineers in Vicksburg, Mississippi, for dam stress analysis. ASC #4 was used by NOAA at Princeton University for developing weather forecasting models. ASC systems #5 and #6 were installed at TI's main plant in Austin and also used by GSI for seismic data processing. ASC #7 went to the Naval Research Lab in Washington, D.C.http://bitsavers.org/pdf/ti/asc/ASC_6.jpg for plasma physics studies.


References

* Peter M. Kogge (1981). ''The Architecture of Pipelined Computers''.
Taylor & Francis Taylor & Francis Group is an international company originating in England that publishes books and academic journals. Its parts include Taylor & Francis, Routledge, F1000 Research or Dovepress. It is a division of Informa plc, a United Ki ...
. pp. 159–162.


External links


The TI ASC: A Highly Modular and Flexible Super Computer ArchitectureTI ASC documentation at bitsavers.org
{{DEFAULTSORT:Ti Advanced Scientific Computer Advanced Scientific Computer Vector supercomputers