Suppressor mutation
   HOME

TheInfoList



OR:

A suppressor mutation is a second
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
that alleviates or reverts the
phenotypic In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
effects of an already existing mutation in a process defined synthetic rescue. Genetic suppression therefore restores the phenotype seen prior to the original background mutation.Hartwell, L. H., Hood, L., Goldberg, M. L., Reynolds, A. E., Silver, L. M., & Veres, R. C. (2008). Genetics: From Genes to Genomes. New York: McGraw-Hill. Suppressor mutations are useful for identifying new genetic sites which affect a biological process of interest. They also provide evidence between functionally interacting molecules and intersecting
biological pathway A biological pathway is a series of interactions among molecules in a cell that leads to a certain product or a change in a cell. Such a pathway can trigger the assembly of new molecules, such as a fat or protein. Pathways can also turn genes on a ...
s.Hodgkin J. Genetic suppression. 2005 Dec 27. In: WormBook: The Online Review of C. elegans Biology nternet Pasadena (CA): WormBook; 2005-.


Intragenic vs. intergenic suppression


Intragenic suppression

Intragenic suppression results from suppressor mutations that occur in the same
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
as the original mutation. In a classic study,
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the helical stru ...
(et al.) used intragenic suppression to study the fundamental nature of the
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
. From this study it was shown that genes are expressed as non-overlapping triplets (
codons The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
). Researchers showed that mutations caused by either a single base insertion (+) or a single base deletion (-) could be "suppressed" or restored by a second mutation of the opposite sign, as long as the two mutations occurred in the same vicinity of the gene. This led to the conclusion that genes needed to be read in a specific "
reading frame In molecular biology, a reading frame is a way of dividing the sequence of nucleotides in a nucleic acid ( DNA or RNA) molecule into a set of consecutive, non-overlapping triplets. Where these triplets equate to amino acids or stop signals during ...
" and a single base insertion or deletion would shift the reading frame (
frameshift mutation A frameshift mutation (also called a framing error or a reading frame shift) is a genetic mutation caused by indels ( insertions or deletions) of a number of nucleotides in a DNA sequence that is not divisible by three. Due to the triplet nature ...
) in such a way that the remaining DNA would code for a different polypeptide than the one intended. Therefore, researchers concluded that the second mutation of opposite sign suppresses the original mutation by restoring the reading frame, as long as the portion between the two mutations is not critical for protein function. In addition to the reading frame, Crick also used suppressor mutations to determine codon size. It was found that while one and two base insertions/deletions of the same sign resulted in a mutant phenotype, deleting or inserting three bases could give a
wild type The wild type (WT) is the phenotype of the typical form of a species as it occurs in nature. Originally, the wild type was conceptualized as a product of the standard "normal" allele at a locus, in contrast to that produced by a non-standard, "m ...
phenotype. From these results it was concluded that an inserted or deleted triplet does not disturb the reading frame and the genetic code is in fact a triplet.


Intergenic suppression

Intergenic (also known as extragenic) suppression relieves the effects of a mutation in one gene by a mutation somewhere else within the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
. The second mutation is not on the same gene as the original mutation. Intergenic suppression is useful for identifying and studying interactions between molecules, such as
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s. For example, a mutation which disrupts the complementary interaction between protein molecules may be compensated for by a second mutation elsewhere in the genome that restores or provides a suitable alternative interaction between those molecules. Several proteins of biochemical,
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
, and
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
pathways have been identified using this approach. Examples of such pathways include receptor-ligand interactions as well as the interaction of components involved in
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritan ...
, transcription, and
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
. These Intergenic suppressions are also likely to persist in the population. When these compensatory mutations are established in organisms like E. coli making it resistant to the drug due to the presence of a drug, and the drug usage is halted, the resistant strains are not easily able to evolve back into strains that can then once again be sensitive to the drug they had incurred resistance to. These strains are likely not subject to losing these compensatory mutations and which would greatly decrease the fitness in the strain resulting in the intermediate strains. These intermediate strains are subjected to bottlenecking and thus making it difficult for the alleles to be reverted prior to Intergenic suppressions. Consequently, when drugs are halted it can be seen that these mutations are likely to persist in the population. Suppressor mutations also occur in genes that code for virus structural proteins. To create a viable phage T4 virus (see image), a balance of structural components is required. An amber mutant of phage T4 contains a mutation that changes a codon for an amino acid in a protein to the nonsense stop codon TAG (see
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in mess ...
and nonsense mutation). If, upon infection, an amber mutant defective in a gene encoding a needed structural component of phage T4 is weakly suppressed (in an ''E. coli'' host containing a specific altered
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
– see
nonsense suppressor A nonsense suppressor is a factor which can inhibit the effect of the nonsense mutation. Nonsense suppressors can be generally divided into two classes: a) a mutated tRNA which can bind with a termination codon on mRNA; b) a mutation on ribosomes d ...
), it will produce a reduced number of the needed structural component. As a consequence few if any viable phage are formed. However, it was found that viable phage could sometimes be produced in the host with the weak nonsense suppressor if a second amber mutation in a gene that encodes another structural protein is also present in the phage genome. It was found that the reason the second amber mutation could suppress the first one is that the two numerically reduced structural proteins would now be in balance. For instance, if the first amber mutation caused a reduction of tail fibers to one tenth the normal level, most phage particles produced would have insufficient tail fibers to be infective. However, if a second amber mutation is defective in a base plate component and causes one tenth the number of base plates to be made, this may restore the balance of tail fibers and base plates, and thus allow infective phage to be produced.


Revertant

In microbial genetics, a revertant is a
mutant In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It ...
that has reverted to its former
genotype The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
or to the original
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (biology), morphology or physical form and structure, its Developmental biology, developmental proc ...
by means of a suppressor mutation, or else by compensatory mutation somewhere in the gene (second site reversion).


See also

*
Synthetic viability Synthetic rescue (or synthetic recovery or synthetic viability when a lethal phenotype is rescued ) refers to a genetic interaction in which a cell that is nonviable, sensitive to a specific drug, or otherwise impaired due to the presence of a genet ...


References


External links

{{Wiktionary
The mutations chapter of the WikiBooks General Biology textbook


Evolutionary biology Molecular genetics * Radiation health effects