Supercontinent
   HOME

TheInfoList



OR:

In
geology Geology () is a branch of natural science concerned with Earth and other Astronomical object, astronomical objects, the features or rock (geology), rocks of which it is composed, and the processes by which they change over time. Modern geology ...
, a supercontinent is the assembly of most or all of
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
's continental blocks or
craton A craton (, , or ; from grc-gre, κράτος "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and ...
s to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent. Supercontinents have assembled and dispersed multiple times in the geologic past (see table). According to modern definitions, a supercontinent does not exist today; the closest in existence to a supercontinent is the current
Afro-Eurasia Afro-Eurasia (also Afroeurasia, Eurafrasia or the Old World) is a landmass comprising the continents of Africa, Asia, and Europe. The terms are compound words of the names of its constituent parts. Its mainland is the largest and most popul ...
n landmass, which covers approx. 57% of Earth's total land area. The last time the continental landmasses were near to one another was 336 to 175 million years ago as the supercontinent, Pangaea. The positions of continents have been accurately determined back to the early
Jurassic The Jurassic ( ) is a geologic period and stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately Mya. The Jurassic constitutes the middle period of ...
, shortly before the breakup of Pangaea.Fluteau, Frédéric. (2003). "Earth dynamics and climate changes". C. R. Geoscience 335 (1): 157–174. doi:10.1016/S1631-0713(03)00004-X The earlier continent
Gondwana Gondwana () was a large landmass, often referred to as a supercontinent, that formed during the late Neoproterozoic (about 550 million years ago) and began to break up during the Jurassic period (about 180 million years ago). The final sta ...
is not considered a supercontinent under the first definition since the landmasses of Baltica,
Laurentia Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, althoug ...
and
Siberia Siberia ( ; rus, Сибирь, r=Sibir', p=sʲɪˈbʲirʲ, a=Ru-Сибирь.ogg) is an extensive geographical region, constituting all of North Asia, from the Ural Mountains in the west to the Pacific Ocean in the east. It has been a part ...
were separate at the time.


Supercontinents throughout geologic history

The following table names reconstructed ancient supercontinents, using Bradley's 2011 looser definition, with an approximate timescale of millions of years ago (Ma).


General chronology

There are two contrasting models for supercontinent evolution through geological time. The first model theorizes that at least two separate supercontinents existed comprising Vaalbara (from ~3636 to ) and
Kenorland Kenorland was one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago (2.72 Ga) by the accretion of Neoarchaean cratons and the formation of new continental crust. ...
(from ~2720 to ). The Neoarchean supercontinent consisted of Superia and Sclavia. These parts of Neoarchean age broke off at ~2480 and and portions of them later collided to form Nuna (Northern Europe North America) (). Nuna continued to develop during the Mesoproterozoic, primarily by lateral
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
of juvenile arcs, and in Nuna collided with other land masses, forming
Rodinia Rodinia (from the Russian родина, ''rodina'', meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago. were prob ...
. Between ~825 and Rodinia broke apart.Donnadieu, Yannick et al. "A 'Snowball Earth' Climate Triggered by Continental Break-Up Through Changes in Runoff." Nature, 428 (2004): 303–306. However, before completely breaking up, some fragments of Rodinia had already come together to form
Gondwana Gondwana () was a large landmass, often referred to as a supercontinent, that formed during the late Neoproterozoic (about 550 million years ago) and began to break up during the Jurassic period (about 180 million years ago). The final sta ...
(also known as Gondwanaland) by . Pangaea formed by through the collision of Gondwana, Laurasia (
Laurentia Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, althoug ...
and Baltica), and Siberia. The second model (Kenorland-Arctica) is based on both palaeomagnetic and geological evidence and proposes that the continental crust comprised a single supercontinent from until break-up during the
Ediacaran The Ediacaran Period ( ) is a geological period that spans 96 million years from the end of the Cryogenian Period 635 million years ago (Mya), to the beginning of the Cambrian Period 538.8 Mya. It marks the end of the Proterozoic Eon, and t ...
Period after . The
reconstruction Reconstruction may refer to: Politics, history, and sociology * Reconstruction (law), the transfer of a company's (or several companies') business to a new company *''Perestroika'' (Russian for "reconstruction"), a late 20th century Soviet Unio ...
Piper, J.D.A. "A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics." Tectonophysics. 589 (2013): 44–56. is derived from the observation that palaeomagnetic poles converge to quasi-static positions for long intervals between ~2.72–2.115, 1.35–1.13, and with only small peripheral modifications to the reconstruction.Piper, J.D.A. "Continental velocity through geological time: the link to magmatism, crustal accretion and episodes of global cooling." Geoscience Frontiers. 4 (2013): 7–36. During the intervening periods, the poles conform to a unified apparent polar wander path. Although it contrasts the first model, the first phase (Protopangea) essentially incorporates Vaalbara and Kenorland of the first model. The explanation for the prolonged duration of the Protopangea-Paleopangea supercontinent appears to be that lid tectonics (comparable to the tectonics operating on Mars and Venus) prevailed during
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
times. According to this theory,
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
as seen on the contemporary Earth became dominant only during the latter part of geological times. This approach was widely criticized by many researchers as it uses incorrect application of paleomagnetic data. The
Phanerozoic The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 538.8 million years to the present, and it began with the Cambrian Period, when anim ...
supercontinent Pangaea began to break up and is still doing so today. Because Pangaea is the most recent of Earth's supercontinents, it is the most well-known and understood. Contributing to Pangaea's popularity in the classroom is the fact that its reconstruction is almost as simple as fitting the present continents bordering the Atlantic-type oceans like puzzle pieces.


Supercontinent cycles

A supercontinent cycle is the break-up of one supercontinent and the development of another, which takes place on a global scale. Supercontinent cycles are not the same as the Wilson cycle, which is the opening and closing of an individual oceanic basin. The Wilson cycle rarely synchronizes with the timing of a supercontinent cycle. However, supercontinent cycles and Wilson cycles were both involved in the creation of Pangaea and Rodinia.
Secular Secularity, also the secular or secularness (from Latin ''saeculum'', "worldly" or "of a generation"), is the state of being unrelated or neutral in regards to religion. Anything that does not have an explicit reference to religion, either negativ ...
trends such as carbonatites, granulites, eclogites, and
greenstone belt Greenstone belts are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that occur within Archaean and Proterozoic cratons between granite and gneiss bodies. The name comes from the gree ...
deformation events are all possible indicators of Precambrian supercontinent cyclicity, although the Protopangea- Paleopangea solution implies that Phanerozoic style of supercontinent cycles did not operate during these times. Also, there are instances where these secular trends have a weak, uneven, or absent imprint on the supercontinent cycle; secular methods for supercontinent reconstruction will produce results that have only one explanation, and each explanation for a trend must fit in with the rest.


Supercontinents and volcanism

The causes of supercontinent assembly and dispersal are thought to be driven by
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
processes in Earth's
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
. Approximately 660 km into the mantle, a discontinuity occurs, affecting the surface crust through processes involving plumes and ''superplumes'' (aka large low-shear-velocity provinces). When a slab of the subducted crust is denser than the surrounding mantle, it sinks to discontinuity. Once the slabs build up, they will sink through to the lower mantle in what is known as a "slab avalanche". This displacement at the discontinuity will cause the lower mantle to compensate and rise elsewhere. The rising mantle can form a plume or superplume. Besides having compositional effects on the upper mantle by replenishing the large-ion lithophile elements, volcanism affects plate movement. The plates will be moved towards a geoidal low perhaps where the slab avalanche occurred and pushed away from the geoidal high that can be caused by the plumes or superplumes. This causes the continents to push together to form supercontinents and was evidently the process that operated to cause the early continental crust to aggregate into Protopangea.Piper, J.D.A. "Protopangea: palaeomagnetic definition of Earth's oldest (Mid-Archaean-Paleoproterozoic) supercontinent." Journal of Geodynamics. 50 (2010): 154–165. Dispersal of supercontinents is caused by the accumulation of heat underneath the crust due to the rising of very large
convection cell In the field of fluid dynamics, a convection cell is the phenomenon that occurs when density differences exist within a body of liquid or gas. These density differences result in rising and/or falling currents, which are the key characteristics ...
s or plumes, and a massive heat release resulted in the final break-up of Paleopangea.Piper, J.D.A., "Paleopangea in Meso-Neoproterozoic times: the paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up." Journal of Geodynamics. 50 (2010): 191–223. Accretion occurs over geoidal lows that can be caused by avalanche slabs or the downgoing limbs of convection cells. Evidence of the accretion and dispersion of supercontinents is seen in the geological rock record. The influence of known volcanic eruptions does not compare to that of
flood basalt A flood basalt (or plateau basalt) is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reac ...
s. The timing of flood basalts has corresponded with a large-scale continental break-up. However, due to a lack of data on the time required to produce flood basalts, the climatic impact is difficult to quantify. The timing of a single lava flow is also undetermined. These are important factors on how flood basalts influenced
paleoclimate Paleoclimatology (British spelling, palaeoclimatology) is the study of climates for which direct measurements were not taken. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to ...
.


Supercontinents and plate tectonics

Global
paleogeography Palaeogeography (or paleogeography) is the study of historical geography, generally physical landscapes. Palaeogeography can also include the study of human or cultural environments. When the focus is specifically on landforms, the term pal ...
and plate interactions as far back as Pangaea are relatively well understood today. However, the evidence becomes more sparse further back in geologic history. Marine magnetic anomalies, passive margin match-ups, geologic interpretation of orogenic belts, paleomagnetism,
paleobiogeography Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, ...
of fossils, and distribution of climatically sensitive strata are all methods to obtain evidence for continent locality and indicators of the environment throughout time. Phanerozoic (541 Ma to present) and Precambrian ( to ) had primarily passive margins and detrital
zircon Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of t ...
s (and orogenic
granite Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies un ...
s), whereas the tenure of Pangaea contained few. Matching edges of continents are where passive margins form. The edges of these continents may rift. At this point, seafloor spreading becomes the driving force. Passive margins are therefore born during the break-up of supercontinents and die during supercontinent assembly. Pangaea's supercontinent cycle is a good example of the efficiency of using the presence or lack of, these entities to record the development, tenure, and break-up of supercontinents. There is a sharp decrease in passive margins between 500 and during the timing of Pangaea's assembly. The tenure of Pangaea is marked by a low number of passive margins during 336 to and its break-up is indicated accurately by an increase in passive margins. Orogenic belts can form during the assembly of continents and supercontinents. The orogenic belts present on continental blocks are classified into three different categories and have implications for interpreting geologic bodies. Intercratonic orogenic belts are characteristic of ocean basin closure. Clear indicators of intracratonic activity contain ophiolites and other oceanic materials that are present in the suture zone. Intracratonic orogenic belts occur as thrust belts and do not contain any oceanic material. However, the absence of ophiolites is not strong evidence for intracratonic belts, because the oceanic material can be squeezed out and eroded away in an intracratonic environment. The third kind of orogenic belt is a confined orogenic belt which is the closure of small basins. The assembly of a supercontinent would have to show intracratonic orogenic belts. However, interpretation of orogenic belts can be difficult. The collision of
Gondwana Gondwana () was a large landmass, often referred to as a supercontinent, that formed during the late Neoproterozoic (about 550 million years ago) and began to break up during the Jurassic period (about 180 million years ago). The final sta ...
and
Laurasia Laurasia () was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around ( Mya), the other being Gondwana. It separated from Gondwana (beginning in the late Triassic period) during the breakup of Pa ...
occurred in the late
Palaeozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and '' ...
. By this collision, the Variscan mountain range was created, along the equator. This 6000-km-long mountain range is usually referred to in two parts: the Hercynian mountain range of the late
Carboniferous The Carboniferous ( ) is a geologic period and system of the Paleozoic that spans 60 million years from the end of the Devonian Period million years ago ( Mya), to the beginning of the Permian Period, million years ago. The name ''Carboniferou ...
makes up the eastern part, and the western part is called the
Appalachians The Appalachian Mountains, often called the Appalachians, (french: Appalaches), are a system of mountains in eastern to northeastern North America. The Appalachians first formed roughly 480 million years ago during the Ordovician Period. They ...
, uplifted in the
early Permian 01 or '01 may refer to: * The year 2001, or any year ending with 01 * The month of January * 1 (number) Music * 01'' (Richard Müller album), 2001 * ''01'' (Son of Dave album), 2000 * ''01'' (Urban Zakapa album), 2011 * ''O1'' (Hiroyuki Sawan ...
. (The existence of a flat elevated plateau-like the
Tibetan Plateau The Tibetan Plateau (, also known as the Qinghai–Tibet Plateau or the Qing–Zang Plateau () or as the Himalayan Plateau in India, is a vast elevated plateau located at the intersection of Central, South and East Asia covering most of the Ti ...
is under much debate.) The locality of the Variscan range made it influential to both the northern and southern hemispheres. The elevation of the Appalachians would greatly influence global atmospheric circulation.


Supercontinental climate

Continents affect the climate of the planet drastically, with supercontinents having a larger, more prevalent influence. Continents modify global wind patterns, control ocean current paths, and have a higher albedo than the oceans. Winds are redirected by mountains, and albedo differences cause shifts in onshore winds. Higher elevation in continental interiors produces a cooler, drier climate, the phenomenon of
continentality Continental climates often have a significant annual variation in temperature (warm summers and cold winters). They tend to occur in the middle latitudes (40 to 55 north), within large landmasses where prevailing winds blow overland bringing som ...
. This is seen today in
Eurasia Eurasia (, ) is the largest continental area on Earth, comprising all of Europe and Asia. Primarily in the Northern and Eastern Hemispheres, it spans from the British Isles and the Iberian Peninsula in the west to the Japanese archipelag ...
, and rock record shows evidence of continentality in the middle of Pangaea.


Glacial

The term glacial-epoch refers to a long episode of glaciation on Earth over millions of years.Eyles, Nick. "Glacio-epochs and the Supercontinent Cycle after ~3.0 Ga: Tectonic Boundary Conditions for Glaciation." Paleogeography, Palaeoclimatology, Palaeoecology 258 (2008): 89–129. Print. Glaciers have major implications on the climate, particularly through sea level change. Changes in the position and elevation of the continents, the paleolatitude and ocean circulation affect the glacial epochs. There is an association between the rifting and breakup of continents and supercontinents and glacial-epochs. According to the first model for Precambrian supercontinents described above the breakup of Kenorland and Rodinia was associated with the
Paleoproterozoic The Paleoproterozoic Era (;, also spelled Palaeoproterozoic), spanning the time period from (2.5–1.6  Ga), is the first of the three sub-divisions ( eras) of the Proterozoic Eon. The Paleoproterozoic is also the longest era of the Earth's ...
and
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is prec ...
glacial-epochs, respectively. In contrast, the second solution described above shows that these glaciations correlated with periods of low continental velocity and it is concluded that a fall in tectonic and corresponding volcanic activity was responsible for these intervals of global frigidity. During the accumulation of supercontinents with times of regional uplift, glacial-epochs seem to be rare with little supporting evidence. However, the lack of evidence does not allow for the conclusion that glacial-epochs are not associated with the collisional assembly of supercontinents. This could just represent a preservation bias. During the late
Ordovician The Ordovician ( ) is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period million years ago (Mya) to the start of the Silurian Period Mya. T ...
(~458.4 Ma), the particular configuration of Gondwana may have allowed for glaciation and high CO2 levels to occur at the same time.Crowley, Thomas J., "Climate Change on Tectonic Time Scales". Tectonophysics. 222 (1993): 277–294. However, some geologists disagree and think that there was a temperature increase at this time. This increase may have been strongly influenced by the movement of Gondwana across the South Pole, which may have prevented lengthy snow accumulation. Although late Ordovician temperatures at the South Pole may have reached freezing, there were no ice sheets during the early Silurian through the late Mississippian Agreement can be met with the theory that continental snow can occur when the edge of a continent is near the pole. Therefore, Gondwana, although located tangent to the South Pole, may have experienced glaciation along its coast.


Precipitation

Though precipitation rates during monsoonal circulations are difficult to predict, there is evidence for a large orographic barrier within the interior of Pangaea during the late Paleozoic The possibility of the SW-NE trending Appalachian-Hercynian Mountains makes the region's monsoonal circulations potentially relatable to present-day monsoonal circulations surrounding the Tibetan Plateau, which is known to positively influence the magnitude of monsoonal periods within Eurasia. It is therefore somewhat expected that lower topography in other regions of the supercontinent during the
Jurassic The Jurassic ( ) is a geologic period and stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately Mya. The Jurassic constitutes the middle period of ...
would negatively influence precipitation variations. The breakup of supercontinents may have affected local precipitation.Baum, Steven K., and Thomas J. Crowley. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print. When any supercontinent breaks up, there will be an increase in precipitation runoff over the surface of the continental landmasses, increasing
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is a ...
weathering Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs '' in situ'' (on site, with little or no movement ...
and the consumption of CO2.


Temperature

Even though during the Archaean solar radiation was reduced by 30 percent and the
Cambrian The Cambrian Period ( ; sometimes symbolized Ꞓ) was the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago ...
-
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
boundary by six percent, the Earth has only experienced three ice ages throughout the Precambrian. Erroneous conclusions are more likely to be made when models are limited to one climatic configuration (which is usually present-day).Baum, Steven K., and Thomas J. Crowely. "Milankovitch Fluctuations on Supercontinents." Geophysical Research Letters. 19 (1992): 793–796. Print. Cold winters in continental interiors are due to rate ratios of radiative cooling (greater) and heat transport from continental rims. To raise winter temperatures within continental interiors, the rate of heat transport must increase to become greater than the rate of radiative cooling. Through climate models, alterations in atmospheric CO2 content and ocean heat transport are not comparatively effective. CO2 models suggest that values were low in the late
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
and
Carboniferous The Carboniferous ( ) is a geologic period and system of the Paleozoic that spans 60 million years from the end of the Devonian Period million years ago ( Mya), to the beginning of the Permian Period, million years ago. The name ''Carboniferou ...
-
Permian The Permian ( ) is a geologic period and stratigraphic system which spans 47 million years from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.9 Mya. It is the last period of the Paleo ...
glaciations. Although early
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ...
values are much larger (more than ten percent higher than that of today). This may be due to high seafloor spreading rates after the breakup of Precambrian supercontinents and the lack of land plants as a carbon sink. During the late Permian, it is expected that seasonal Pangaean temperatures varied drastically. Subtropic summer temperatures were warmer than that of today by as much as 6–10 degrees and mid-latitudes in the winter were less than −30 degrees Celsius. These seasonal changes within the supercontinent were influenced by the large size of Pangaea. And, just like today, coastal regions experienced much less variation. During the Jurassic, summer temperatures did not rise above zero degrees Celsius along the northern rim of
Laurasia Laurasia () was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around ( Mya), the other being Gondwana. It separated from Gondwana (beginning in the late Triassic period) during the breakup of Pa ...
, which was the northernmost part of Pangaea (the southernmost portion of Pangaea was Gondwana). Ice-rafted
dropstone Dropstones are isolated fragments of rock found within finer-grained water-deposited sedimentary rocks or pyroclastic beds. They range in size from small pebbles to boulders. The critical distinguishing feature is that there is evidence that the ...
s sourced from Russia are indicators of this northern boundary. The Jurassic is thought to have been approximately 10 degrees Celsius warmer along 90 degrees East paleolongitude compared to the present temperature of today's central Eurasia.


Milankovitch cycles

Many studies of the Milankovitch cycles during supercontinent time periods have focused on the Mid-
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of ...
. Present amplitudes of Milankovitch cycles over present-day Eurasia may be mirrored in both the southern and northern hemispheres of the supercontinent Pangaea. Climate modeling shows that summer fluctuations varied 14–16 degrees Celsius on Pangaea, which is similar or slightly higher than summer temperatures of Eurasia during the
Pleistocene The Pleistocene ( , often referred to as the ''Ice age'') is the geological Epoch (geology), epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was fina ...
. The largest-amplitude Milankovitch cycles are expected to have been at mid-to high-latitudes during the
Triassic The Triassic ( ) is a geologic period and system which spans 50.6 million years from the end of the Permian Period 251.902 million years ago ( Mya), to the beginning of the Jurassic Period 201.36 Mya. The Triassic is the first and shortest per ...
and Jurassic.


Proxies

Granite Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies un ...
s and detrital zircons have notably similar and episodic appearances in the rock record. Their fluctuations correlate with Precambrian supercontinent cycles. The U–Pb zircon dates from orogenic granites are among the most reliable aging determinants. Some issues exist with relying on granite sourced zircons, such as a lack of evenly globally sourced data and the loss of granite zircons by sedimentary coverage or
pluton In geology, an igneous intrusion (or intrusive body or simply intrusion) is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and com ...
ic consumption. Where granite zircons are less adequate, detrital zircons from
sandstone Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicat ...
s appear and make up for the gaps. These detrital zircons are taken from the sands of major modern rivers and their drainage basins. Oceanic magnetic anomalies and paleomagnetic data are the primary resources used for reconstructing continent and supercontinent locations back to roughly 150 Ma.


Supercontinents and atmospheric gases

Plate tectonics and the chemical composition of the atmosphere (specifically
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), methane ...
es) are the two most prevailing factors present within the
geologic time scale The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochr ...
.
Continental drift Continental drift is the hypothesis that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The idea of continental drift has been subsumed into the science of pl ...
influences both cold and warm climatic episodes. Atmospheric circulation and climate are strongly influenced by the location and formation of continents and mega continents. Therefore, continental drift influences mean global temperature. Oxygen levels of the Archaean Eon were negligible and today they are roughly 21 percent. It is thought that the Earth's oxygen content has risen in stages: six or seven steps that are timed very closely to the development of Earth's supercontinents. # Continents collide # Supermountains form # Erosion of super mountains # Large quantities of minerals and nutrients wash out to open ocean # Explosion of marine algae life (partly sourced from noted nutrients) # Mass amounts of oxygen produced during photosynthesis The process of Earth's increase in atmospheric oxygen content is theorized to have started with the continent-continent collision of huge landmasses forming supercontinents, and therefore possibly supercontinent mountain ranges (super mountains). These super mountains would have eroded, and the mass amounts of nutrients, including
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
and
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
, would have washed into oceans, just as we see happening today. The oceans would then be rich in nutrients essential to photosynthetic organisms, which would then be able to respire mass amounts of oxygen. There is an apparent direct relationship between orogeny and the atmospheric oxygen content. There is also evidence for increased sedimentation concurrent with the timing of these mass oxygenation events, meaning that the organic carbon and
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
at these times were more likely to be buried beneath sediment and therefore unable to react with the free oxygen. This sustained the atmospheric oxygen increases. During this time, there was an increase in molybdenum isotope fractionation. It was temporary but supports the increase in atmospheric oxygen because molybdenum isotopes require free oxygen to fractionate. Between 2.45 and the second period of oxygenation occurred, it has been called the 'great oxygenation event.' Many pieces of evidence support the existence of this event, including
red beds Red beds (or redbeds) are sedimentary rocks, typically consisting of sandstone, siltstone, and shale, that are predominantly red in color due to the presence of ferric oxides. Frequently, these red-colored sedimentary strata locally contain t ...
appearance (meaning that Fe3+ was being produced and became an important component in soils). The third oxygenation stage approximately is indicated by the disappearance of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
formations.
Neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarn ...
isotopic studies suggest that iron formations are usually from continental sources, meaning that dissolved Fe and Fe2+ had to be transported during continental erosion. A rise in atmospheric oxygen prevents Fe transport, so the lack of iron formations may have been due to an increase in oxygen. The fourth oxygenation event, roughly is based on modeled rates of sulfur isotopes from marine carbonate-associated
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
s. An increase (near doubled concentration) of sulfur isotopes, which is suggested by these models, would require an increase in the oxygen content of the deep oceans. Between 650 and there were three increases in ocean oxygen levels, this period is the fifth oxygenation stage. One of the reasons indicating this period to be an oxygenation event is the increase in
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
-sensitive
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lead ...
in black
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especiall ...
s. The sixth event occurred between 360 and and was identified by models suggesting shifts in the balance of 34S in sulfates and 13C in carbonates, which were strongly influenced by an increase in atmospheric oxygen.


See also

*
List of paleocontinents This is a list of paleocontinents, significant landmasses that have been proposed to exist in the geological past. The degree of certainty to which the identified landmasses can regarded as independent entities reduces as geologists look further ba ...
* Superocean


References


Further reading

* Nield, Ted, ''Supercontinent: Ten Billion Years in the Life of Our Planet'', Harvard University Press, 2009,


External links


The Paleomap Project – Christopher R. Scotese
{{Continents of the world * Historical geology