Superconducting magnet
   HOME

TheInfoList



OR:

A superconducting magnet is an
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no
electrical resistance The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual paralle ...
and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
s, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
instruments in hospitals, and in scientific equipment such as
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with ...
spectrometers,
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
s,
fusion reactors Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices de ...
and
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.


Construction


Cooling

During operation, the magnet windings must be cooled below their critical temperature, the temperature at which the winding material changes from the normal resistive state and becomes a superconductor, which is far below room temperature in the cryogenic range. The windings are typically cooled to temperatures significantly below their critical temperature, because the lower the temperature, the better superconductive windings work—the higher the currents and magnetic fields they can stand without returning to their non-superconductive state. Two types of cooling systems are commonly used to maintain magnet windings at temperatures sufficient to maintain superconductivity:


Liquid-cooled

Liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
is used as a
coolant A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosi ...
for many superconductive windings. It has a boiling point of 4.2 K, far below the critical temperature of most winding materials. The magnet and coolant are contained in a thermally insulated container ( dewar) called a
cryostat A cryostat (from ''cryo'' meaning cold and ''stat'' meaning stable) is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various r ...
. To keep the helium from boiling away, the cryostat is usually constructed with an outer jacket containing (significantly cheaper) liquid nitrogen at 77 K. Alternatively, a thermal shield made of conductive material and maintained in 40 K-60 K temperature range, cooled by conductive connections to the cryocooler cold head, is placed around the helium-filled vessel to keep the heat input to the latter at acceptable level. One of the goals of the search for
high temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previ ...
s is to build magnets that can be cooled by liquid nitrogen alone. At temperatures above about 20 K cooling can be achieved without boiling off cryogenic liquids.


Mechanical cooling

Because of increasing cost and the dwindling availability of liquid helium, many superconducting systems are cooled using two stage mechanical refrigeration. In general two types of mechanical cryocoolers are employed which have sufficient cooling power to maintain magnets below their critical temperature. The Gifford-McMahon Cryocooler has been commercially available since the 1960s and has found widespread application. The G-M regenerator cycle in a cryocooler operates using a piston type displacer and heat exchanger. Alternatively, 1999 marked the first commercial application using a
pulse tube cryocooler The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers (e.g. appl ...
. This design of cryocooler has become increasingly common due to low vibration and long service interval as pulse tube designs utilize an acoustic process in lieu of mechanical displacement. In a typical two-stage refrigerator, the first stage will offer higher cooling capacity but at higher temperature (≈77 K) with the second stage reaching ≈4.2 K and <2.0 watts cooling power. In use, the first stage is used primarily for ancillary cooling of the cryostat with the second stage used primarily for cooling the magnet.


Coil winding materials

The maximal magnetic field achievable in a superconducting magnet is limited by the field at which the winding material ceases to be superconducting, its "critical field", ''H''c, which for
type-II superconductor In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
s is its
upper critical field For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity (zero resistance) and by the complete expulsi ...
. Another limiting factor is the "critical current", ''I''c, at which the winding material also ceases to be superconducting. Advances in magnets have focused on creating better winding materials. The superconducting portions of most current magnets are composed of niobium-titanium. This material has critical temperature of 10
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phy ...
s and can superconduct at up to about 15 teslas. More expensive
magnets A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel ...
can be made of niobium-tin (Nb3Sn). These have a ''T''c of 18 K. When operating at 4.2 K they are able to withstand a much higher
magnetic field intensity A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
, up to 25 to 30 teslas. Unfortunately, it is far more difficult to make the required filaments from this material. This is why sometimes a combination of Nb3Sn for the high-field sections and NbTi for the lower-field sections is used. Vanadium-gallium is another material used for the high-field inserts.
High-temperature superconductors High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previo ...
(e.g.
BSCCO Bismuth strontium calcium copper oxide (BSCCO, pronounced ''bisko''), is a type of cuprate superconductor having the generalized chemical formula Bi2 Sr2 Ca''n''−1 Cu''n'' O2''n''+4+''x'', with ''n'' = 2 being the most commonly stud ...
or
YBCO Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen ...
) may be used for high-field inserts when required magnetic fields are higher than Nb3Sn can manage. BSCCO, YBCO or
magnesium diboride Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K (−234 °C). In terms of its composition, M ...
may also be used for current leads, conducting high currents from room temperature into the cold magnet without an accompanying large heat leak from resistive leads.


Conductor structure

The coil windings of a superconducting
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nicke ...
are made of wires or tapes of Type II superconductors (e.g. niobium-titanium or niobium-tin). The wire or tape itself may be made of tiny filaments (about 20
micrometers The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
thick) of superconductor in a
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
matrix. The copper is needed to add mechanical stability, and to provide a low resistance path for the large currents in case the temperature rises above ''T''c or the current rises above ''I''c and superconductivity is lost. These filaments need to be this small because in this type of superconductor the current only flows in a surface layer whose thickness is limited to the
London penetration depth In superconductors, the London penetration depth (usually denoted as \lambda or \lambda_L) characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to e^ times that of the magnetic field at the surface ...
. (See Skin effect) The coil must be carefully designed to withstand (or counteract)
magnetic pressure In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density P_B of a magnetic field with strength B can be expressed as :P_B = \frac where \mu_0 is the vacuum permeability. Any magnetic fie ...
and Lorentz forces that could otherwise cause wire fracture or crushing of insulation between adjacent turns.


Operation


Power supply

The current to the coil windings is provided by a high current, very low voltage DC
power supply A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a ...
, since in steady state the only voltage across the magnet is due to the resistance of the feeder wires. Any change to the current through the magnet must be done very slowly, first because electrically the magnet is a large
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
and an abrupt current change will result in a large voltage spike across the windings, and more importantly because fast changes in current can cause
eddy current Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnet ...
s and mechanical stresses in the windings that can precipitate a quench (see below). So the power supply is usually microprocessor-controlled, programmed to accomplish current changes gradually, in gentle ramps. It usually takes several minutes to energize or de-energize a laboratory-sized magnet.


Persistent mode

An alternate operating mode used by most superconducting magnets is to
short-circuit A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit. ...
the windings with a piece of superconductor once the magnet has been energized. The windings become a closed superconducting loop, the power supply can be turned off, and
persistent current In physics, persistent current refers to a perpetual electric current, not requiring an external power source. Such a current is impossible in normal electrical devices, since all commonly-used conductors have a non-zero resistance, and this resis ...
s will flow for months, preserving the magnetic field. The advantage of this ''persistent mode'' is that stability of the magnetic field is better than is achievable with the best power supplies, and no energy is needed to power the windings. The short circuit is made by a 'persistent switch', a piece of superconductor inside the magnet connected across the winding ends, attached to a small heater. When the magnet is first turned on, the switch wire is heated above its transition temperature, so it is resistive. Since the winding itself has no resistance, no current flows through the switch wire. To go to persistent mode, the supply current is adjusted until the desired magnetic field is obtained, then the heater is turned off. The persistent switch cools to its superconducting temperature, short-circuiting the windings. Then the power supply can be turned off. The winding current, and the magnetic field, will not actually persist forever, but will decay slowly according to a normal inductive (L/R) time constant: :H(t) = H_0 e^\, where R\, is a small residual resistance in the superconducting windings due to joints or a phenomenon called flux motion resistance. Nearly all commercial superconducting magnets are equipped with persistent switches.


Magnet quench

A quench is an abnormal termination of magnet operation that occurs when part of the superconducting coil enters the normal (
resistive The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
) state. This can occur because the field inside the magnet is too large, the rate of change of field is too large (causing
eddy current Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnet ...
s and resultant
heating A central heating system provides warmth to a number of spaces within a building from one main source of heat. It is a component of heating, ventilation, and air conditioning (short: HVAC) systems, which can both cool and warm interior spaces. ...
in the copper support matrix), or a combination of the two. More rarely a defect in the magnet can cause a quench. When this happens, that particular spot is subject to rapid Joule heating from the enormous current, which raises the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
of the surrounding regions. This pushes those regions into the normal state as well, which leads to more heating in a chain reaction. The entire magnet rapidly becomes normal (this can take several seconds, depending on the size of the superconducting coil). This is accompanied by a loud bang as the energy in the magnetic field is converted to heat, and rapid boil-off of the cryogenic fluid. The abrupt decrease of current can result in kilovolt inductive voltage spikes and arcing. Permanent damage to the magnet is rare, but components can be damaged by localized heating, high voltages, or large mechanical forces. In practice, magnets usually have safety devices to stop or limit the current when the beginning of a quench is detected. If a large magnet undergoes a quench, the inert vapor formed by the evaporating cryogenic fluid can present a significant
asphyxiation Asphyxia or asphyxiation is a condition of deficient supply of oxygen to the body which arises from abnormal breathing. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that ca ...
hazard to operators by displacing breathable air. A large section of the superconducting magnets in CERN's Large Hadron Collider unexpectedly quenched during start-up operations in 2008, necessitating the replacement of a number of magnets. In order to mitigate against potentially destructive quenches, the superconducting magnets that form the LHC are equipped with fast-ramping heaters which are activated once a quench event is detected by the complex quench protection system. As the dipole bending magnets are connected in series, each power circuit includes 154 individual magnets, and should a quench event occur, the entire combined stored energy of these magnets must be dumped at once. This energy is transferred into dumps that are massive blocks of metal which heat up to several hundreds of degrees Celsius due to the resistive heating in a matter of seconds. Although undesirable, a magnet quench is a "fairly routine event" during the operation of a particle accelerator.


Magnet "training"

In certain cases, superconducting magnets designed for very high currents require extensive bedding in, to enable the magnets to function at their full planned currents and fields. This is known as "training" the magnet, and involves a type of material memory effect. One situation this is required in is the case of
particle collider A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators. Colliders are used as a research tool in particle ...
s such as CERN's Large Hadron Collider.Restarting the LHC: Why 13 Tev? , CERN
Home.web.cern.ch. Retrieved on 2015-12-19.
First LHC magnets prepped for restart
symmetry magazine. Retrieved on 2015-12-19.
The magnets of the LHC were planned to run at 8 TeV (2×4 TeV) on its first run and 14 TeV (2×7 TeV) on its second run, but were initially operated at a lower energy of 3.5 TeV and 6.5 TeV per beam respectively. Because of initial
crystallographic defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell para ...
s in the material, they will initially lose their superconducting ability ("quench") at a lower level than their design current. CERN states that this is due to
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
s causing tiny movements in the magnets, which in turn cause superconductivity to be lost when operating at the high precisions needed for their planned current. By repeatedly running the magnets at a lower current and then slightly increasing the current until they quench under control, the magnet will gradually both gain the required ability to withstand the higher currents of its design specification without quenches occurring, and have any such issues "shaken" out of them, until they are eventually able to operate reliably at their full planned current without experiencing quenches.


History

Although the idea of making electromagnets with superconducting wire was proposed by
Heike Kamerlingh Onnes Heike Kamerlingh Onnes (21 September 1853 – 21 February 1926) was a Dutch physicist and Nobel laureate. He exploited the Hampson–Linde cycle to investigate how materials behave when cooled to nearly absolute zero and later to liquefy heliu ...
shortly after he discovered superconductivity in 1911, a practical superconducting electromagnet had to await the discovery of superconducting materials that could support large critical supercurrent densities in high magnetic fields. The first successful superconducting magnet was built by G.B. Yntema in 1955 using niobium wire and achieved a field of 0.7 T at 4.2 K. Then, in 1961, J.E. Kunzler, E. Buehler, F.S.L. Hsu, and J.H. Wernick made the discovery that a compound of niobium and tin could support critical-supercurrent densities greater than 100,000 amperes per square centimeter in magnetic fields of 8.8 teslas. Despite its brittle nature, niobium-tin has since proved extremely useful in supermagnets generating magnetic fields up to 20 teslas. The persistent switch was invented in 1960 by Dwight Adams while a postdoctoral associate at Stanford University. The second persistent switch was constructed at the University of Florida by M.S. student R.D. Lichti in 1963. It has been preserved in a showcase in the UF Physics Building. In 1962, T.G. Berlincourt and R.R. Hake discovered the high-critical-magnetic-field, high-critical-supercurrent-density properties of niobium-titanium alloys. Although niobium-titanium alloys possess less spectacular superconducting properties than niobium-tin, they are highly ductile, easily fabricated, and economical. Useful in supermagnets generating magnetic fields up to 10 teslas, niobium-titanium alloys are the most widely used supermagnet materials. In 1986, the discovery of
high temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previ ...
s by
Georg Bednorz Johannes Georg Bednorz (; born 16 May 1950) is a German physicist who, together with K. Alex Müller, discovered high-temperature superconductivity in ceramics, for which they shared the 1987 Nobel Prize in Physics. Life and work Bednorz was bor ...
and Karl Müller energized the field, raising the possibility of magnets that could be cooled by liquid nitrogen instead of the more difficult-to-work-with helium. In 2007, a magnet with windings of
YBCO Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen ...
achieved a world record field of 26.8 teslas. The US National Research Council has a goal of creating a 30-tesla superconducting magnet. In 2016, Yoon et al reported a 26T no-insulation superconducting magnet that they built out of GdBa2Cu3O7–x, using a technique they had previously reported in 2013. In 2017, a YBCO magnet created by the National High Magnetic Field Laboratory (NHMFL) broke the previous world record with a strength of 32 T. This is an all superconducting user magnet, designed to last for many decades. They hold the current record as of March 2018. In 2019, a new world-record of 32.35 T with all-superconducting magnet is achieved by Institute of Electrical Engineering, Chinese Academy of Sciences (IEE, CAS). No-insulation technique for the HTS insert magnet is also used. In 2019, the NHMFL also developed a non-insulated YBCO test coil combined with a resistive magnet and broke the lab's own world record for highest continuous magnetic field for any configuration of magnet at 45.5 T. In 2022, the Hefei Institutes of Physical Science, Chinese Academy of Sciences (HFIPS, CAS) claims new world record for strongest steady magnetic field of 45.22 T reached, while the previous NHMFL 45.5T record in 2019 was actually reached when the magnet failed immediately in a
quench In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as p ...
.


Uses

Superconducting magnets have a number of advantages over
resistive The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
electromagnets. They can generate magnetic fields that are up to ten times stronger than those generated by ordinary ferromagnetic-core electromagnets, which are limited to fields of around 2 T. The field is generally more stable, resulting in less noisy measurements. They can be smaller, and the area at the center of the magnet where the field is created is empty rather than being occupied by an iron core. Most importantly, for large magnets they can consume much less power. In the persistent state (above), the only power the magnet consumes is that needed for any refrigeration equipment to preserve the cryogenic temperature. Higher fields, however can be achieved with special cooled resistive electromagnets, as superconducting coils will enter the normal (non-superconducting) state (see quench, above) at high fields. Steady fields of over 40 T can now be achieved by many institutions around the world usually by combining a Bitter electromagnet with a superconducting magnet (often as an insert). Superconducting magnets are widely used in
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
machines,
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with ...
equipment,
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
s, magnetic separation processes, and
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. In Japan, after decades of research and development into superconducting maglev by
Japanese National Railways The abbreviated JNR or , was the business entity that operated Japan's national railway network from 1949 to 1987. Network Railways As of June 1, 1949, the date of establishment of JNR, it operated of narrow gauge () railways in all 46 pref ...
and later Central Japan Railway Company (JR Central), the Japanese government gave permission to JR Central to build the
Chūō Shinkansen The is a Japanese maglev line under construction between Tokyo and Nagoya, with plans for extension to Osaka. Its initial section is between Shinagawa Station in Tokyo and Nagoya Station in Nagoya, with stations in Sagamihara, Kōfu, Iida ...
, linking Tokyo to Nagoya and later to Osaka. One of the most challenging use of SC magnets is in the LHC
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
.Operational challenges of the LHC
cea.fr
The niobium-titanium (Nb-Ti) magnets operate at 1.9 K to allow them to run safely at 8.3 T. Each magnet stores 7 MJ. In total the magnets store . Once or twice a day, as the protons are accelerated from 450 GeV to 7 TeV, the field of the superconducting bending magnets will be increased from 0.54 T to 8.3 T. The central solenoid and toroidal field superconducting magnets designed for the ITER fusion reactor use niobium-tin (Nb3Sn) as a superconductor. The Central Solenoid coil will carry 46 kA and produce a field of 13.5 teslas. The 18 Toroidal Field coils at max field of 11.8 T will store 41 GJ (total?). They have been tested at a record 80 kA. Other lower field ITER magnets (PF and CC) will use niobium-titanium. Most of the ITER magnets will have their field varied many times per hour. One high-resolution
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
was planned to use a 21-tesla SC magnet. Now, 1.2 GHz (28.2Tesla) NMR magnet has been achieved in 2020 by using HTS magnet. 1.3 GHz NMR magnet is under construction. Globally in 2014, about five billion euros worth of economic activity resulted from which superconductivity is indispensable. MRI systems, most of which employ niobium-titanium, accounted for about 80% of that total.


See also

*
Fault current limiter A fault current limiter (FCL), also known as fault current controller (FCC), is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network) ''without'' complete disconnection. The term includes sup ...
* Flux pumping


References


Further reading

* Martin N. Wilson, ''Superconducting Magnets (Monographs on Cryogenics)'', Oxford University Press, New edition (1987), . * Yukikazu Iwasa, ''Case Studies in Superconducting Magnets: Design and Operational Issues (Selected Topics in Superconductivity)'', Kluwer Academic / Plenum Publishers, (October 1994), . * Habibo Brechna, ''Superconducting magnet systems'', New York, Springer-Verlag New York, Inc., 1973, ,


External links


Making Superconducting Magnets
From the National High Magnetic Field Laboratory
1986 evaluation of NbTi and Nb3Sn for particle accelerator magnets.
{{DEFAULTSORT:Superconducting Magnet Types of magnets Superconductivity fr:Supraconductivité#Électro-aimants