Stability of the solar system
   HOME

TheInfoList



OR:

The stability of the Solar System is a subject of much inquiry in
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
. Though the
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s have been stable when historically observed, and will be in the short term, their weak gravitational effects on one another can add up in unpredictable ways.
For this reason (among others), the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
is chaotic in the technical sense of mathematical
chaos theory Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions, and were once thought to hav ...
, and even the most precise long-term models for the orbital motion of the Solar System are not valid over more than a few tens of millions of years. The Solar System is stable in human terms, and far beyond, given that it is unlikely any of the planets will collide with each other or be ejected from the system in the next few billion years, and that
Earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
will be relatively stable. Since Newton's law of gravitation (1687), mathematicians and astronomers (such as
Pierre-Simon Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarize ...
,
Joseph Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaCarl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
,
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "Th ...
,
Andrey Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Sovi ...
, Vladimir Arnold, and Jürgen Moser) have searched for evidence for the stability of the planetary motions, and this quest led to many mathematical developments and several successive "proofs" of stability of the Solar System.


Overview and challenges

The orbits of the planets are open to long-term variations. Modeling the Solar System is a case of the ''n''-body problem of physics, which is generally unsolvable except by numerical simulation.


Resonance

An
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
happens when any two periods have a simple numerical ratio. The most fundamental period for an object in the Solar System is its
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
, and orbital resonances pervade the Solar System. In 1867, the American astronomer
Daniel Kirkwood Daniel Kirkwood (September 27, 1814 – June 11, 1895) was an American astronomer. Kirkwood was born in Harford County, Maryland to John and Agnes (née Hope) Kirkwood. He graduated in mathematics from the York County Academy in York, Pennsylv ...
noticed that asteroids in the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
are not randomly distributed. There were distinct gaps in the belt at locations that corresponded to resonances with
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
. For example, there were no asteroids at the 3:1 resonance — a distance of — or at the 2:1 resonance at . These are now known as the
Kirkwood gap A Kirkwood gap is a gap or dip in the distribution of the semi-major axes (or equivalently of the orbital periods) of the orbits of main-belt asteroids. They correspond to the locations of orbital resonances with Jupiter. For example, there ...
s. Some asteroids were later discovered to orbit in these gaps, but their orbits are unstable and they will eventually break out of the resonance due to close encounters with a major planet. Another common form of resonance in the Solar System is spin–orbit resonance, where the
rotation period The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the ...
(the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is our
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, which is in a 1:1 spin–orbit resonance that keeps its far side away from Earth. (This feature is also known as "
tidal locking Tidal locking between a pair of co- orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked b ...
.") Another example is Mercury, which is in a 3:2 spin–orbit resonance with the Sun.


Predictability

The planets' orbits are chaotic over longer timescales, in such a way that the whole Solar System possesses a
Lyapunov time In mathematics, the Lyapunov time is the characteristic timescale on which a dynamical system is chaotic. It is named after the Russian mathematician Aleksandr Lyapunov. It is defined as the inverse of a system's largest Lyapunov exponent. Use T ...
in the range of 2–230 million years. In all cases, this means that the position of a planet along its orbit ultimately becomes impossible to predict with any certainty. In some cases, the orbits themselves may change dramatically. Such chaos manifests most strongly as changes in eccentricity, with some planets' orbits becoming significantly more — or less — elliptical. In calculation, the unknowns include
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s, the solar
quadrupole moment A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure ref ...
, mass loss from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
through radiation and
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
, drag of solar wind on planetary
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior d ...
s, galactic tidal forces, and effects from passing
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s.


Scenarios


Neptune–Pluto resonance

The
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
system lies in a 3:2
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
. C.J. Cohen and E.C. Hubbard at the
Naval Surface Warfare Center Dahlgren Division The United States Naval Surface Warfare Center Dahlgren Division (NSWCDD), named for Rear Admiral John A. Dahlgren, is located in King George County, Virginia, in close proximity to the largest fleet concentration area in the Navy. NSWCDD is ...
discovered this in 1965. Although the resonance itself will remain stable in the short term, it becomes impossible to predict the position of Pluto with any degree of accuracy, as the uncertainty in the position grows by a factor ''e'' with each
Lyapunov time In mathematics, the Lyapunov time is the characteristic timescale on which a dynamical system is chaotic. It is named after the Russian mathematician Aleksandr Lyapunov. It is defined as the inverse of a system's largest Lyapunov exponent. Use T ...
, which for Pluto is 10–20 million years into the future. Thus, on the time scale of hundreds of millions of years Pluto's orbital phase becomes impossible to determine, even if Pluto's orbit appears to be perfectly stable on 10
MYR The abbreviation Myr, "million years", is a unit of a quantity of (i.e. ) years, or 31.556926 teraseconds. Usage Myr (million years) is in common use in fields such as Earth science and cosmology. Myr is also used with Mya (million years ago). ...
time scales (Ito and Tanikawa 2002, MNRAS).


Jovian moon resonance

Jupiter's moon Io has an orbital period of 1.769 days, nearly half that of the next satellite
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Clif ...
(3.551 days). They are in a 2:1 orbital resonance. This particular resonance has important consequences because Europa's gravity perturbs the orbit of Io. As Io moves closer to Jupiter and then further away in the course of an orbit, it experiences significant tidal stresses resulting in active volcanoes. Europa is also in a 2:1 resonance with the next satellite Ganymede.


Mercury–Jupiter 1:1 perihelion-precession resonance

The planet Mercury is especially susceptible to
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
's influence because of a small celestial coincidence: Mercury's
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
, the point where it gets closest to the Sun, precesses at a rate of about 1.5 degrees every 1,000 years, and Jupiter's perihelion precesses only a little slower. At one point, the two may fall into sync, at which time Jupiter's constant gravitational tugs could accumulate and pull Mercury off course with 1–2% probability, 3–4 billion years into the future.
This could eject it from the Solar System altogether or send it on a collision course with
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
, the Sun, or Earth.


Chaos from geological processes

Another example is Earth's
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
, which, due to friction raised within Earth's
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
by tidal interactions with the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, will be rendered chaotic between 1.5 and 4.5 billion years from now.


External influences

Objects coming from outside the Solar System can also affect it. Though they are not technically part of the solar system for the purposes of studying the system's intrinsic stability, they nevertheless can change it. Unfortunately, predicting the potential influences of these extrasolar objects is even more difficult than predicting the influences of objects within the system simply because of the sheer distances involved. Among the known objects with a potential to significantly impact the Solar System is the star Gliese 710, which is expected to pass near the system in approximately 1.281 million years. Though the star is not expected to substantially affect the orbits of the major planets, it could substantially disrupt the
Oort cloud The Oort cloud (), sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from ...
, potentially causing major comet activity throughout the solar system. There are at least a dozen other stars that have a potential to make a close approach in the next few million years. In 2022, Garett Brown and Hanno Rein of the
University of Toronto The University of Toronto (UToronto or U of T) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen's Park. It was founded by royal charter in 1827 as King's College, the first institution ...
published a study exploring the long-term stability of the Solar System in the presence of weak perturbations from stellar flybys. They determined that if a passing star altered the
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lon ...
of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
by at least 0.03 AU (4.49 million km; 2.79 million mi) it would increase the chance of instability by 10 times over the subsequent 5 billion years. They also estimated that a flyby of this magnitude is not likely to occur for 100 billion years.


Studies


LONGSTOP

Project LONGSTOP (Long-term Gravitational Study of the Outer Planets) was a 1982 international consortium of Solar System dynamicists led by Archie Roy. It involved creation of a model on a supercomputer, integrating the orbits of (only) the outer planets. Its results revealed several curious exchanges of energy between the outer planets, but no signs of gross instability.


Digital Orrery

Another project involved constructing the Digital Orrery by
Gerry Sussman Gerald Jay Sussman (born February 8, 1947) is the Panasonic Professor of Electrical engineering, Electrical Engineering at the Massachusetts Institute of Technology (MIT). He received his Bachelor of Science, S.B. and Doctor of Philosophy, Ph.D. ...
and his MIT group in 1988. The group used a supercomputer to integrate the orbits of the outer planets over 845 million years (some 20 percent of the age of the Solar System). In 1988, Sussman and Wisdom found data using the Orrery that revealed that Pluto's orbit shows signs of chaos, due in part to its peculiar
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
with
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
. If Pluto's orbit is chaotic, then technically the whole Solar System is chaotic, because each body, even one as small as Pluto, affects the others to some extent through gravitational interactions.


Laskar 1

In 1989,
Jacques Laskar Jacques Laskar (born 28 April 1955 in Paris) is a French astronomer. He is a research director at the French National Centre for Scientific Research (CNRS), and a member of ''Astronomy and dynamical systems'' of the Institute of Celestial Mechanics ...
of the
Bureau des Longitudes Bureau ( ) may refer to: Agencies and organizations * Government agency *Public administration * News bureau, an office for gathering or distributing news, generally for a given geographical location * Bureau (European Parliament), the administ ...
in Paris published the results of his numerical integration of the Solar System over 200 million years. These were not the full equations of motion, but rather averaged equations along the lines of those used by
Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized ...
. Laskar's work showed that the Earth's orbit (as well as the orbits of all the inner planets) is chaotic and that an error as small as 15 metres in measuring the position of the Earth today would make it impossible to predict where the Earth would be in its orbit in just over 100 million years' time.


Laskar and Gastineau

Jacques Laskar and his colleague Mickaël Gastineau in 2008 took a more thorough approach by directly simulating 2,501 possible futures. Each of the 2,501 cases has slightly different initial conditions: Mercury's position varies by about between one simulation and the next. In 20 cases, Mercury goes into a dangerous orbit and often ends up colliding with Venus or plunging into the Sun. Moving in such a warped orbit, Mercury's gravity is more likely to shake other planets out of their settled paths: In one simulated case, Mercury's perturbations sent
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
heading toward Earth.


Batygin and Laughlin

Independently of Laskar and Gastineau, Batygin and Laughlin were also directly simulating the Solar System 20 billion years into the future. Their results reached the same basic conclusions of Laskar and Gastineau, while additionally providing a lower bound of a billion years on the dynamical lifespan of the Solar System.


Brown and Rein

In 2020, Garett Brown and Hanno Rein of the
University of Toronto The University of Toronto (UToronto or U of T) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen's Park. It was founded by royal charter in 1827 as King's College, the first institution ...
published the results of their numerical integration of the Solar System over 5 billion years. Their work showed that the Mercury's orbit is highly chaotic and that an error as small as in measuring the position of Mercury today would make it impossible to predict the eccentricity of its orbit in just over 200 million years' time.


See also

*
Clearing the neighbourhood "Clearing the neighbourhood" (or dynamical dominance) around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise ...
*
Future of Earth The biological and geological future of Earth can be extrapolated based on the estimated effects of several long-term influences. These include the chemistry at Earth's surface, the cooling rate of the planet's interior, the gravitational ...
*
Global catastrophic risk A global catastrophic risk or a doomsday scenario is a hypothetical future event that could damage human well-being on a global scale, even endangering or destroying modern civilization. An event that could cause human extinction or permanen ...
*
Resonant trans-Neptunian object In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune. The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, ...


References


External links

*
Long Shot: Planet Could Hit Earth in Distant Future
Space.com.
Project LONGSTOP
- Long-term Gravitational Study of the Outer Planets {{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System Chaos theory Dynamics of the Solar System Orbital perturbations