Spontaneous emission
   HOME

TheInfoList



OR:

Spontaneous emission is the process in which a quantum mechanical system (such as a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
, an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
or a
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a p ...
) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms (or molecules) are excited by some means other than heating, the spontaneous emission is called
luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a crys ...
. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced ( electroluminescence, chemiluminescence etc.). If the excitation is affected by the absorption of radiation the spontaneous emission is called
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called
phosphorescence Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluo ...
. Figurines that glow in the dark are phosphorescent.
Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
s start via spontaneous emission, then during continuous operation work by
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
. Spontaneous emission cannot be explained by classical electromagnetic theory and is fundamentally a quantum process. According to the American Physical Society, the first person to correctly predict the phenomenon of spontaneous emission was
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
in a series of papers starting in 1916, culminating in what is now called the Einstein A Coefficient. Einstein's quantum theory of radiation anticipated ideas later expressed in quantum electrodynamics and quantum optics by several decades. Later, after the formal discovery of quantum mechanics in 1926, the rate of spontaneous emission was accurately described from first principles by Dirac in his quantum theory of radiation, the precursor to the theory which he later called quantum electrodynamics. Contemporary physicists, when asked to give a physical explanation for spontaneous emission, generally invoke the
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pri ...
of the electromagnetic field. In 1963, the Jaynes–Cummings model was developed describing the system of a two-level atom interacting with a quantized field mode (i.e. the vacuum) within an optical cavity. It gave the nonintuitive prediction that the rate of spontaneous emission could be controlled depending on the boundary conditions of the surrounding vacuum field. These experiments gave rise to cavity quantum electrodynamics (CQED), the study of effects of mirrors and cavities on radiative corrections.


Introduction

If a light source ('the atom') is in an excited state with energy E_2, it may spontaneously decay to a lower lying level (e.g., the ground state) with energy E_1, releasing the difference in energy between the two states as a photon. The photon will have
angular frequency In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit ti ...
\omega and an
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
\hbar \omega: :E_2 - E_1 = \hbar \omega, where \hbar is the reduced Planck constant. Note: \hbar \omega = h\nu, where h is the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and \nu is the linear
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
. The phase of the photon in spontaneous emission is random as is the direction in which the photon propagates. This is not true for
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
. An energy level diagram illustrating the process of spontaneous emission is shown below: If the number of light sources in the excited state at time t is given by N(t), the rate at which N decays is: :\frac = -A_ N(t), where A_ is the rate of spontaneous emission. In the rate-equation A_ is a proportionality constant for this particular transition in this particular light source. The constant is referred to as the '' Einstein A coefficient'', and has units s. The above equation can be solved to give: :N(t) =N(0) e^= N(0) e^, where N(0) is the initial number of light sources in the excited state, t is the time and \Gamma_ is the radiative decay rate of the transition. The number of excited states N thus decays exponentially with time, similar to radioactive decay. After one lifetime, the number of excited states decays to 36.8% of its original value (\frac-time). The radiative decay rate \Gamma_ is inversely proportional to the lifetime \tau_: :A_=\Gamma_=\frac.


Theory

Spontaneous transitions were not explainable within the framework of the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
, in which the electronic energy levels were quantized, but the electromagnetic field was not. Given that the eigenstates of an atom are properly diagonalized, the overlap of the wavefunctions between the excited state and the ground state of the atom is zero. Thus, in the absence of a quantized electromagnetic field, the excited state atom cannot decay to the ground state. In order to explain spontaneous transitions, quantum mechanics must be extended to a quantum field theory, wherein the electromagnetic field is quantized at every point in space. The quantum field theory of electrons and electromagnetic fields is known as quantum electrodynamics. In quantum electrodynamics (or QED), the electromagnetic field has a ground state, the QED vacuum, which can mix with the excited stationary states of the atom. As a result of this interaction, the "stationary state" of the atom is no longer a true eigenstate of the combined system of the atom plus electromagnetic field. In particular, the electron transition from the excited state to the electronic ground state mixes with the transition of the electromagnetic field from the ground state to an excited state, a field state with one photon in it. Spontaneous emission in free space depends upon vacuum fluctuations to get started. Although there is only one electronic transition from the excited state to ground state, there are many ways in which the electromagnetic field may go from the ground state to a one-photon state. That is, the electromagnetic field has infinitely more degrees of freedom, corresponding to the different directions in which the photon can be emitted. Equivalently, one might say that the phase space offered by the electromagnetic field is infinitely larger than that offered by the atom. This infinite degree of freedom for the emission of the photon results in the apparent irreversible decay, i.e., spontaneous emission. In the presence of electromagnetic vacuum modes, the combined atom-vacuum system is explained by the superposition of the wavefunctions of the excited state atom with no photon and the ground state atom with a single emitted photon: : , \psi(t)\rangle = a(t)e^, e;0\rangle + \sum_ b_(t)e^, g;1_\rangle where , e;0\rangle and a(t) are the atomic excited state-electromagnetic vacuum wavefunction and its probability amplitude, , g;1_\rangle and b_(t) are the ground state atom with a single photon (of mode ks ) wavefunction and its probability amplitude, \omega_0 is the atomic transition frequency, and \omega_k = c, k, is the frequency of the photon. The sum is over k and s , which are the wavenumber and polarization of the emitted photon, respectively. As mentioned above, the emitted photon has a chance to be emitted with different wavenumbers and polarizations, and the resulting wavefunction is a superposition of these possibilities. To calculate the probability of the atom at the ground state ( , b(t), ^2), one needs to solve the time evolution of the wavefunction with an appropriate Hamiltonian. To solve for the transition amplitude, one needs to average over (integrate over) all the vacuum modes, since one must consider the probabilities that the emitted photon occupies various parts of phase space equally. The "spontaneously" emitted photon has infinite different modes to propagate into, thus the probability of the atom re-absorbing the photon and returning to the original state is negligible, making the atomic decay practically irreversible. Such irreversible time evolution of the atom-vacuum system is responsible for the apparent spontaneous decay of an excited atom. If one were to keep track of all the vacuum modes, the combined atom-vacuum system would undergo unitary time evolution, making the decay process reversible. Cavity quantum electrodynamics is one such system where the vacuum modes are modified resulting in the reversible decay process, see also Quantum revival. The theory of the spontaneous emission under the QED framework was first calculated by Weisskopf and Wigner.


Rate of spontaneous emission

The rate of spontaneous emission (i.e., the radiative rate) can be described by Fermi's golden rule. The rate of emission depends on two factors: an 'atomic part', which describes the internal structure of the light source and a 'field part', which describes the density of electromagnetic modes of the environment. The atomic part describes the strength of a transition between two states in terms of transition moments. In a homogeneous medium, such as
free space A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
, the rate of spontaneous emission in the dipole approximation is given by: : \Gamma_(\omega)= \frac = \frac : \frac = 4 \alpha , \langle 1, \mathbf, 2\rangle , ^2 where \omega is the emission frequency, n is the index of refraction, \mu_ is the transition dipole moment, \varepsilon_0 is the vacuum permittivity, \hbar is the reduced Planck constant, c is the vacuum
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
, and \alpha is the fine-structure constant. The expression , \langle 1, \mathbf, 2\rangle, stands for the definition of the transition dipole moment , \mu_, =, \langle 1, \mathbf, 2\rangle, for dipole moment operator \mathbf=q\mathbf, where q is the elementary charge and \mathbf stands for position operator. (This approximation breaks down in the case of inner shell electrons in high-Z atoms.) The above equation clearly shows that the rate of spontaneous emission in free space increases proportionally to \omega^3. In contrast with atoms, which have a discrete emission spectrum, quantum dots can be tuned continuously by changing their size. This property has been used to check the \omega^3-frequency dependence of the spontaneous emission rate as described by Fermi's golden rule.A. F. van Driel, G. Allan, C. Delerue, P. Lodahl,W. L. Vos and D. Vanmaekelbergh, Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states, Physical Review Letters, 95, 236804 (2005
Phys. Rev. Lett. 95, 236804 (2005) - Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States (aps.org)
/ref>


Radiative and nonradiative decay: the quantum efficiency

In the rate-equation above, it is assumed that decay of the number of excited states N only occurs under emission of light. In this case one speaks of full radiative decay and this means that the quantum efficiency is 100%. Besides radiative decay, which occurs under the emission of light, there is a second decay mechanism; nonradiative decay. To determine the total decay rate \Gamma_, radiative and nonradiative rates should be summed: :\Gamma_=\Gamma_ + \Gamma_ where \Gamma_ is the total decay rate, \Gamma_ is the radiative decay rate and \Gamma_ the nonradiative decay rate. The quantum efficiency (QE) is defined as the fraction of emission processes in which emission of light is involved: : \text=\frac. In nonradiative relaxation, the energy is released as phonons, more commonly known as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
. Nonradiative relaxation occurs when the energy difference between the levels is very small, and these typically occur on a much faster time scale than radiative transitions. For many materials (for instance,
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
s), electrons move quickly from a high energy level to a meta-stable level via small nonradiative transitions and then make the final move down to the bottom level via an optical or radiative transition. This final transition is the transition over the bandgap in semiconductors. Large nonradiative transitions do not occur frequently because the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
generally cannot support large vibrations without destroying bonds (which generally doesn't happen for relaxation). Meta-stable states form a very important feature that is exploited in the construction of
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
s. Specifically, since electrons decay slowly from them, they can be deliberately piled up in this state without too much loss and then
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
can be used to boost an optical signal.


See also

* Absorption (optics) *
Stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
* Emission spectrum *
Spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
* Atomic spectral line *
Laser science Laser science or laser physics is a branch of optics that describes the theory and practice of lasers. Laser science is principally concerned with quantum electronics, laser construction, optical cavity design, the physics of producing a popu ...
* Purcell effect * Photonic crystal *
Vacuum Rabi oscillation A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom ...
* Jaynes–Cummings model


References


External links


Detail calculation of the Spontaneous Emission: Weisskopf-Wigner Theory


{{DEFAULTSORT:Spontaneous Emission Physical phenomena Laser science Electromagnetic radiation Charge carriers