HOME
The Info List - Spectroscopic





Spectroscopy
Spectroscopy
/spɛkˈtrɒskəpi/ is the study of the interaction between matter and electromagnetic radiation.[1][2] Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, by a prism. Later the concept was expanded greatly to include any interaction with radiative energy as a function of its wavelength or frequency. Spectroscopic data are often represented by an emission spectrum, a plot of the response of interest as a function of wavelength or frequency.

Contents

1 Introduction 2 Theory 3 Classification of methods

3.1 Type of radiative energy 3.2 Nature of the interaction 3.3 Type of material

3.3.1 Atoms 3.3.2 Molecules 3.3.3 Crystals and extended materials 3.3.4 Nuclei

4 Other types 5 Applications 6 History 7 See also 8 Notes 9 References 10 External links

Introduction[edit]

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this template message)

Spectroscopy
Spectroscopy
and spectrography are terms used to refer to the measurement of radiation intensity as a function of wavelength and are often used to describe experimental spectroscopic methods. Spectral measurement devices are referred to as spectrometers, spectrophotometers, spectrographs or spectral analyzers. Daily observations of color can be related to spectroscopy. Neon lighting is a direct application of atomic spectroscopy. Neon and other noble gases have characteristic emission frequencies (colors). Neon lamps use collision of electrons with the gas to excite these emissions. Inks, dyes and paints include chemical compounds selected for their spectral characteristics in order to generate specific colors and hues. A commonly encountered molecular spectrum is that of nitrogen dioxide. Gaseous nitrogen dioxide has a characteristic red absorption feature, and this gives air polluted with nitrogen dioxide a reddish-brown color. Rayleigh scattering
Rayleigh scattering
is a spectroscopic scattering phenomenon that accounts for the color of the sky. Spectroscopic studies were central to the development of quantum mechanics and included Max Planck's explanation of blackbody radiation, Albert Einstein's explanation of the photoelectric effect and Niels Bohr's explanation of atomic structure and spectra. Spectroscopy
Spectroscopy
is used in physical and analytical chemistry because atoms and molecules have unique spectra. As a result, these spectra can be used to detect, identify and quantify information about the atoms and molecules. Spectroscopy
Spectroscopy
is also used in astronomy and remote sensing on Earth. Most research telescopes have spectrographs. The measured spectra are used to determine the chemical composition and physical properties of astronomical objects (such as their temperature and velocity). Theory[edit]

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this template message)

One of the central concepts in spectroscopy is a resonance and its corresponding resonant frequency. Resonances were first characterized in mechanical systems such as pendulums. Mechanical systems that vibrate or oscillate will experience large amplitude oscillations when they are driven at their resonant frequency. A plot of amplitude vs. excitation frequency will have a peak centered at the resonance frequency. This plot is one type of spectrum, with the peak often referred to as a spectral line, and most spectral lines have a similar appearance. In quantum mechanical systems, the analogous resonance is a coupling of two quantum mechanical stationary states of one system, such as an atom, via an oscillatory source of energy such as a photon. The coupling of the two states is strongest when the energy of the source matches the energy difference between the two states. The energy

( E )

displaystyle (E)

of a photon is related to its frequency

( ν )

displaystyle (nu )

by

E = h ν

displaystyle E=hnu

where

h

displaystyle h

is Planck's constant, and so a spectrum of the system response vs. photon frequency will peak at the resonant frequency or energy. Particles such as electrons and neutrons have a comparable relationship, the de Broglie relations, between their kinetic energy and their wavelength and frequency and therefore can also excite resonant interactions. Spectra of atoms and molecules often consist of a series of spectral lines, each one representing a resonance between two different quantum states. The explanation of these series, and the spectral patterns associated with them, were one of the experimental enigmas that drove the development and acceptance of quantum mechanics. The hydrogen spectral series in particular was first successfully explained by the Rutherford-Bohr quantum model of the hydrogen atom. In some cases spectral lines are well separated and distinguishable, but spectral lines can also overlap and appear to be a single transition if the density of energy states is high enough. Named series of lines include the principal, sharp, diffuse and fundamental series. Classification of methods[edit]

A huge diffraction grating at the heart of the ultra-precise ESPRESSO spectrograph.[3]

Spectroscopy
Spectroscopy
is a sufficiently broad field that many sub-disciplines exist, each with numerous implementations of specific spectroscopic techniques. The various implementations and techniques can be classified in several ways. Type of radiative energy[edit] Types of spectroscopy are distinguished by the type of radiative energy involved in the interaction. In many applications, the spectrum is determined by measuring changes in the intensity or frequency of this energy. The types of radiative energy studied include:

Electromagnetic radiation
Electromagnetic radiation
was the first source of energy used for spectroscopic studies. Techniques that employ electromagnetic radiation are typically classified by the wavelength region of the spectrum and include microwave, terahertz, infrared, near infrared, visible and ultraviolet, x-ray and gamma spectroscopy. Particles, due to their de Broglie wavelength, can also be a source of radiative energy and both electrons and neutrons are commonly used. For a particle, its kinetic energy determines its wavelength. Acoustic spectroscopy involves radiated pressure waves. Mechanical methods can be employed to impart radiating energy, similar to acoustic waves, to solid materials.

Nature of the interaction[edit] Types of spectroscopy can also be distinguished by the nature of the interaction between the energy and the material. These interactions include:[1]

Absorption occurs when energy from the radiative source is absorbed by the material. Absorption is often determined by measuring the fraction of energy transmitted through the material; absorption will decrease the transmitted portion. Emission indicates that radiative energy is released by the material. A material's blackbody spectrum is a spontaneous emission spectrum determined by its temperature; this feature can be measured in the infrared by instruments such as the Atmospheric Emitted Radiance Interferometer (AERI).[4] Emission can also be induced by other sources of energy such as flames or sparks or electromagnetic radiation in the case of fluorescence. Elastic scattering and reflection spectroscopy determine how incident radiation is reflected or scattered by a material. Crystallography employs the scattering of high energy radiation, such as x-rays and electrons, to examine the arrangement of atoms in proteins and solid crystals. Impedance spectroscopy
Impedance spectroscopy
studies the ability of a medium to impede or slow the transmittance of energy. For optical applications, this is characterized by the index of refraction. Inelastic scattering phenomena involve an exchange of energy between the radiation and the matter that shifts the wavelength of the scattered radiation. These include Raman and Compton scattering. Coherent or resonance spectroscopy are techniques where the radiative energy couples two quantum states of the material in a coherent interaction that is sustained by the radiating field. The coherence can be disrupted by other interactions, such as particle collisions and energy transfer, and so often require high intensity radiation to be sustained. Nuclear magnetic resonance (NMR) spectroscopy is a widely used resonance method and ultrafast laser methods are also now possible in the infrared and visible spectral regions.

Type of material[edit] Spectroscopic studies are designed so that the radiant energy interacts with specific types of matter. Atoms[edit] Atomic spectroscopy was the first application of spectroscopy developed. Atomic absorption spectroscopy
Atomic absorption spectroscopy
(AAS) and atomic emission spectroscopy (AES) involve visible and ultraviolet light. These absorptions and emissions, often referred to as atomic spectral lines, are due to electronic transitions of outer shell electrons as they rise and fall from one electron orbit to another. Atoms
Atoms
also have distinct x-ray spectra that are attributable to the excitation of inner shell electrons to excited states. Atoms
Atoms
of different elements have distinct spectra and therefore atomic spectroscopy allows for the identification and quantitation of a sample's elemental composition. Robert Bunsen
Robert Bunsen
and Gustav Kirchhoff discovered new elements by observing their emission spectra. Atomic absorption lines are observed in the solar spectrum and referred to as Fraunhofer lines
Fraunhofer lines
after their discoverer. A comprehensive explanation of the hydrogen spectrum was an early success of quantum mechanics and explained the Lamb shift
Lamb shift
observed in the hydrogen spectrum, which further led to the development of quantum electrodynamics. Modern implementations of atomic spectroscopy for studying visible and ultraviolet transitions include flame emission spectroscopy, inductively coupled plasma atomic emission spectroscopy, glow discharge spectroscopy, microwave induced plasma spectroscopy, and spark or arc emission spectroscopy. Techniques for studying x-ray spectra include X-ray spectroscopy
X-ray spectroscopy
and X-ray fluorescence
X-ray fluorescence
(XRF). Molecules[edit] The combination of atoms into molecules leads to the creation of unique types of energetic states and therefore unique spectra of the transitions between these states. Molecular spectra can be obtained due to electron spin states (electron paramagnetic resonance), molecular rotations, molecular vibration and electronic states. Rotations are collective motions of the atomic nuclei and typically lead to spectra in the microwave and millimeter-wave spectral regions; rotational spectroscopy and microwave spectroscopy are synonymous. Vibrations are relative motions of the atomic nuclei and are studied by both infrared and Raman spectroscopy. Electronic excitations are studied using visible and ultraviolet spectroscopy as well as fluorescence spectroscopy. Studies in molecular spectroscopy led to the development of the first maser and contributed to the subsequent development of the laser. Crystals and extended materials[edit] The combination of atoms or molecules into crystals or other extended forms leads to the creation of additional energetic states. These states are numerous and therefore have a high density of states. This high density often makes the spectra weaker and less distinct, i.e., broader. For instance, blackbody radiation is due to the thermal motions of atoms and molecules within a material. Acoustic and mechanical responses are due to collective motions as well. Pure crystals, though, can have distinct spectral transitions, and the crystal arrangement also has an effect on the observed molecular spectra. The regular lattice structure of crystals also scatters x-rays, electrons or neutrons allowing for crystallographic studies. Nuclei[edit] Nuclei also have distinct energy states that are widely separated and lead to gamma ray spectra. Distinct nuclear spin states can have their energy separated by a magnetic field, and this allows for NMR spectroscopy. Other types[edit]

This section is in a list format that may be better presented using prose. You can help by converting this section to prose, if appropriate. Editing help is available. (April 2016)

Other types of spectroscopy are distinguished by specific applications or implementations:

Acoustic resonance spectroscopy is based on sound waves primarily in the audible and ultrasonic regions Auger spectroscopy is a method used to study surfaces of materials on a micro-scale. It is often used in connection with electron microscopy. Cavity ring down spectroscopy Circular Dichroism
Circular Dichroism
spectroscopy Coherent anti-Stokes Raman spectroscopy
Raman spectroscopy
(CARS) is a recent technique that has high sensitivity and powerful applications for in vivo spectroscopy and imaging.[5] Cold vapour atomic fluorescence spectroscopy Correlation spectroscopy
Correlation spectroscopy
encompasses several types of two-dimensional NMR spectroscopy. Deep-level transient spectroscopy
Deep-level transient spectroscopy
measures concentration and analyzes parameters of electrically active defects in semiconducting materials Dual polarisation interferometry measures the real and imaginary components of the complex refractive index Electron
Electron
energy loss spectroscopy (EELS) in transmission electron microscopy Electron
Electron
phenomenological spectroscopy measures physicochemical properties and characteristics of electronic structure of multicomponent and complex molecular systems. EPR spectroscopy Force spectroscopy Fourier transform spectroscopy
Fourier transform spectroscopy
is an efficient method for processing spectra data obtained using interferometers. Fourier transform infrared spectroscopy (FTIR) is a common implementation of infrared spectroscopy. NMR also employs Fourier transforms. Hadron spectroscopy studies the energy/mass spectrum of hadrons according to spin, parity, and other particle properties. Baryon spectroscopy and meson spectroscopy are both types of hadron spectroscopy. Hyperspectral imaging
Hyperspectral imaging
is a method to create a complete picture of the environment or various objects, each pixel containing a full visible, VNIR, NIR, or infrared spectrum. Inelastic electron tunneling spectroscopy
Inelastic electron tunneling spectroscopy
(IETS) uses the changes in current due to inelastic electron-vibration interaction at specific energies that can also measure optically forbidden transitions. Inelastic neutron scattering
Inelastic neutron scattering
is similar to Raman spectroscopy, but uses neutrons instead of photons. Laser-Induced Breakdown Spectroscopy
Spectroscopy
(LIBS), also called Laser-induced plasma spectrometry (LIPS) Laser
Laser
spectroscopy uses tunable lasers[6] and other types of coherent emission sources, such as optical parametric oscillators,[7] for selective excitation of atomic or molecular species. Mass spectroscopy is a historical term used to refer to mass spectrometry. Current recommendations[8] are to use the latter term. Use of the term mass spectroscopy originated in the use of phosphor screens to detect ions. Mössbauer spectroscopy
Mössbauer spectroscopy
probes the properties of specific isotopic nuclei in different atomic environments by analyzing the resonant absorption of gamma-rays. See also Mössbauer effect. Multivariate optical computing is an all optical compressed sensing technique, generally used in harsh environments, that directly calculates chemical information from a spectrum as analogue output. Neutron
Neutron
spin echo spectroscopy measures internal dynamics in proteins and other soft matter systems Photoacoustic spectroscopy
Photoacoustic spectroscopy
measures the sound waves produced upon the absorption of radiation. Photoemission spectroscopy Photothermal spectroscopy measures heat evolved upon absorption of radiation. Pump-probe spectroscopy can use ultrafast laser pulses to measure reaction intermediates in the femtosecond timescale. Raman optical activity
Raman optical activity
spectroscopy exploits Raman scattering and optical activity effects to reveal detailed information on chiral centers in molecules. Raman spectroscopy Saturated spectroscopy Scanning tunneling spectroscopy Spectrophotometry Spin noise spectroscopy traces spontaneous fluctuations of electronic and nuclear spins.[9] Time-resolved spectroscopy measures the decay rate(s) of excited states using various spectroscopic methods. Time-Stretch Spectroscopy[10][11] Thermal infrared spectroscopy measures thermal radiation emitted from materials and surfaces and is used to determine the type of bonds present in a sample as well as their lattice environment. The techniques are widely used by organic chemists, mineralogists, and planetary scientists. Transient grating spectroscopy measures quasiparticle propagation. It can track changes in metallic materials as they are irradiated. Ultraviolet photoelectron spectroscopy (UPS) Ultraviolet–visible spectroscopy Vibrational circular dichroism
Vibrational circular dichroism
spectroscopy Video spectroscopy X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy
(XPS)

Applications[edit]

UVES is a high-resolution spectrograph on the Very Large Telescope.[12]

Cure monitoring of composites using optical fibers. Estimate weathered wood exposure times using near infrared spectroscopy.[13] Measurement of different compounds in food samples by absorption spectroscopy both in visible and infrared spectrum. Measurement of toxic compounds in blood samples

History[edit] Main article: History of spectroscopy The history of spectroscopy began with Isaac Newton's optics experiments (1666–1672). Newton applied the word "spectrum" to describe the rainbow of colors that combine to form white light and that are revealed when the white light is passed through a prism. During the early 1800s, Joseph von Fraunhofer
Joseph von Fraunhofer
made experimental advances with dispersive spectrometers that enabled spectroscopy to become a more precise and quantitative scientific technique. Since then, spectroscopy has played and continues to play a significant role in chemistry, physics and astronomy.

"In 1672, in the first paper that he submitted to the Royal Society, Sir Isaac Newton
Isaac Newton
described an experiment in which he permitted sunlight to pass through a small hole and then through a prism. Newton found that sunlight, which looks white to us, is actually made up of a mixture of all the colors of the rainbow" [14] "In 1802, William Hyde Wollaston
William Hyde Wollaston
built an improved spectrometer that included a lens to focus the Sun’s spectrum on a screen. Upon use, Wollaston realized that the colors were not spread uniformly, but instead had missing patches of colors, which appeared as dark bands in the spectrum. Later, in 1815, German physicist Joseph Fraunhofer
Joseph Fraunhofer
also examined the solar spectrum, and found about 600 such dark lines (missing colors), which are now known as Fraunhofer lines, or Absorption lines." [14]

See also[edit]

Applied spectroscopy Astronomical spectroscopy Biomedical spectroscopy Coronium History of spectroscopy List of spectroscopists Metamerism (color) Operando spectroscopy Scattering theory Spectral power distributions Spectroscopic notation Spectral theory

Notes[edit]

^ a b Crouch, Stanley; Skoog, Douglas A. (2007). Principles of instrumental analysis. Australia: Thomson Brooks/Cole. ISBN 0-495-01201-7.  ^ Herrmann, R.; C. Onkelinx (1986). "Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry (Recommendations 1986)". Pure and Applied Chemistry. 58 (12): 1737–1742. doi:10.1351/pac198658121737.  ^ "A Taste of ESPRESSO". Retrieved 15 September 2015.  ^ Mariani, Z.; Strong, K.; Wolff, M.; Rowe, P.; Walden, V.; Fogal, P. F.; Duck, T.; Lesins, G.; Turner, D. S.; Cox, C.; Eloranta, E.; Drummond, J. R.; Roy, C.; Turner, D. D.; Hudak, D.; Lindenmaier, I. A. (2012). "Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers". Atmos. Meas. Tech. 5 (2): 329–344. Bibcode:2012AMT.....5..329M. doi:10.5194/amt-5-329-2012.  ^ Evans, C.L.; Xie, X.S. (2008). "Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine". Annual Review of Analytical Chemistry. 1: 883–909. Bibcode:2008ARAC....1..883E. doi:10.1146/annurev.anchem.1.031207.112754. PMID 20636101.  ^ W. Demtröder, Laser
Laser
Spectroscopy, 3rd Ed. (Springer, 2003). ^ Orr BJ; Haub J G; He Y; White RT (2016). "Spectroscopic Applications of Pulsed Tunable Optical Parametric Oscillators". In Duarte FJ. Tunable Laser
Laser
Applications (3rd ed.). Boca Raton: CRC Press. pp. 17–142. ISBN 978-1-4822-6106-6. CS1 maint: Multiple names: authors list (link) ^ Murray, Kermit K.; Boyd, Robert K.; Eberlin, Marcos N.; Langley, G. John; Li, Liang; Naito, Yasuhide (2013). "Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013)". Pure and Applied Chemistry. 85 (7): 1. doi:10.1351/PAC-REC-06-04-06. ISSN 0033-4545.  ^ Y. V. Pershin, N. A. Sinitsyn (2016). "The theory of spin noise spectroscopy: a review". Rep. Prog. Phys. 79 (10): 106501. arXiv:1603.06858 . Bibcode:2016RPPh...79j6501S. doi:10.1088/0034-4885/79/10/106501.  ^ Solli, D. R.; Chou, J.; Jalali, B. (2008). "Amplified wavelength–time transformation for real-time spectroscopy". Nature Photonics. 2: 48–51. Bibcode:2008NaPho...2...48S. doi:10.1038/nphoton.2007.253.  ^ Chou, Jason; Solli, Daniel R.; Jalali, Bahram (2008). "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation". Applied Physics Letters. 92 (11): 111102. arXiv:0803.1654 . Bibcode:2008ApPhL..92k1102C. doi:10.1063/1.2896652.  ^ "Media advisory: Press Conference to Announce Major Result from Brazilian Astronomers". ESO Announcement. Retrieved 21 August 2013.  ^ Wang, Xiping; Wacker, James P. (2006). "Using NIR Spectroscopy
Spectroscopy
to Predict Weathered Wood Exposure Times" (PDF). WTCE 2006 – 9th world conference on timber engineering.  ^ a b Fraknoi, Andrew; Morrison, David (13 October 2016). "OpenStax Astronomy". 

References[edit]

John M. Chalmers; Peter Griffiths, eds. (2006). Handbook of Vibrational Spectroscopy
Spectroscopy
(5 Volume Set)format= requires url= (help). New York: Wiley. doi:10.1002/0470027320. ISBN 0-471-98847-2.  Jerry Workman; Art Springsteen, eds. (1998). Applied Spectroscopy. Boston: Academic Press. ISBN 978-0-08-052749-9.  Peter M. Skrabal (2012). Spectroscopy
Spectroscopy
- An interdisciplinary integral description of spectroscopy from UV to NMR (e-book). ETH Zurich: vdf Hochschulverlag AG. doi:10.3218/3385-4. ISBN 978-3-7281-3385-4. 

External links[edit]

Wikimedia Commons has media related to Spectroscopy.

Wikiquote has quotations related to: Spectroscopy

Look up spectroscopy in Wiktionary, the free dictionary.

Spectroscopy
Spectroscopy
links at Curlie (based on DMOZ) Amateur spectroscopy links at Curlie (based on DMOZ) NIST Atomic Spectroscopy
Spectroscopy
Databases MIT Spectroscopy
Spectroscopy
Lab's History of Spectroscopy Timeline of Spectroscopy

v t e

Analytical chemistry

Instrumentation

Atomic absorption spectrometer Flame emission spectrometer Gas chromatograph High-performance liquid chromatograph Infrared spectrometer Mass spectrometer Melting point apparatus Microscope Spectrometer Spectrophotometer

Techniques

Calorimetry Chromatography Electroanalytical methods Gravimetric analysis Mass spectrometry Spectroscopy

Sampling

Coning and quartering Dilution Dissolution Filtration Masking Pulverization Sample preparation Separation process Sub-sampling

Calibration

Chemometrics Calibration curve Matrix effect Internal standard Standard addition Isotope
Isotope
dilution

Prominent publications

Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Chemistry Analytical Biochemistry

Chemistry

v t e

Branches of chemistry

Dictionary of chemical formulas List of biomolecules List of inorganic compounds Periodic table

Physical

Chemical kinetics Chemical physics Nuclear chemistry Electrochemistry Femtochemistry Geochemistry Photochemistry Quantum chemistry Solid-state chemistry Spectroscopy Surface science Thermochemistry

Organic

Biochemistry Bioorganic chemistry Biophysical chemistry Chemical biology Clinical chemistry Fullerene chemistry Medicinal chemistry Neurochemistry Pharmacy Physical organic chemistry Polymer chemistry

Inorganic

Bioinorganic chemistry Cluster chemistry Coordination chemistry Materials science Organometallic chemistry

Others

Actinide chemistry Analytical chemistry Astrochemistry Chemistry
Chemistry
education Clay chemistry Click chemistry Computational chemistry Cosmochemistry Environmental chemistry Food chemistry Forensic chemistry Green chemistry Post-mortem chemistry Supramolecular chemistry Theoretical chemistry Wet chemistry

Category Portal Commons WikiProject

v t e

Concepts in organic chemistry

Aromaticity Covalent bonding Functional groups Nomenclature Organic compounds Organic reactions Organic synthesis Publications Spectroscopy Stereochemistry List of organic compounds

v t e

Lasers

List of laser articles List of laser types List of laser applications Laser
Laser
acronyms

Laser
Laser
types: Solid-state

Semiconductor

Dye Gas

Chemical Excimer Ion Metal Vapor

Laser
Laser
physics

Active laser medium Amplified spontaneous emission Continuous wave Doppler cooling Laser
Laser
ablation Laser
Laser
cooling Laser
Laser
linewidth Lasing threshold Magneto-optical trap Optical tweezers Population inversion Resolved sideband cooling Ultrashort pulse

Laser
Laser
optics

Beam expander Beam homogenizer B Integral Chirped pulse amplification Gain-switching Gaussian beam Injection seeder Laser
Laser
beam profiler M squared Mode-locking Multiple-prism grating laser oscillator Multiphoton intrapulse interference phase scan Optical amplifier Optical cavity Optical isolator Output coupler Q-switching Regenerative amplification

Laser
Laser
spectroscopy

Cavity ring-down spectroscopy Confocal laser scanning microscopy Laser-based angle-resolved photoemission spectroscopy Laser
Laser
diffraction analysis Laser-induced breakdown spectroscopy Laser-induced fluorescence Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy Raman spectroscopy Second-harmonic imaging microscopy Terahertz time-domain spectroscopy Tunable diode laser absorption spectroscopy Two-photon excitation microscopy Ultrafast laser spectroscopy

Laser
Laser
ionization

Above threshold ionization Atmospheric-pressure laser ionization Matrix-assisted laser desorption/ionization Resonance-enhanced multiphoton ionization Soft laser desorption Surface-assisted laser desorption/ionization Surface-enhanced laser desorption/ionization

Laser
Laser
fabrication

Laser
Laser
beam welding Laser
Laser
bonding Laser
Laser
converting Laser
Laser
cutting Laser
Laser
cutting bridge Laser
Laser
drilling Laser
Laser
engraving Laser-hybrid welding Laser
Laser
peening Multiphoton lithography Pulsed laser deposition Selective laser melting Selective laser sintering

Laser
Laser
medicine

Computed tomography laser mammography IntraLASIK Laser
Laser
capture microdissection Laser
Laser
hair removal Laser
Laser
lithotripsy Laser
Laser
coagulation Laser
Laser
scalpel Laser
Laser
surgery Laser
Laser
thermal keratoplasty LASIK Low level laser therapy Optical coherence tomography Photorefractive keratectomy Photorejuvenation Soft-tissue laser surgery

Laser
Laser
fusion

Argus laser Cyclops laser GEKKO XII HiPER ISKRA lasers Janus laser Laboratory for Laser
Laser
Energetics Laser
Laser
integration line Laser
Laser
Mégajoule Long path laser LULI2000 Mercury laser National Ignition Facility Nike laser Nova (laser) Novette laser Shiva laser Trident laser Vulcan laser

Civil applications

3D laser scanner CD DVD Laser
Laser
lighting display Laser
Laser
pointer Laser
Laser
printer Laser
Laser
tag

Military applications

Advanced Tactical Laser Boeing Laser
Laser
Avenger Dazzler (weapon) Electrolaser Laser
Laser
designator Laser
Laser
guidance Laser-guided bomb Laser
Laser
guns Laser
Laser
rangefinder Laser
Laser
warning receiver Laser
Laser
weapon LLM01 Multiple Integrated Laser
Laser
Engagement System Tactical High Energy Laser Tactical light ZEUS-HLONS (HMMWV Laser
Laser
Ordnance Neutralization System)

Category Commons

v t e

Spectroscopy

Infrared

FT-IR Raman Resonance
Resonance
Raman Rotational Vibrational Rotational-vibrational

UV-Vis-NIR

Ultraviolet-visible Fluorescence Vibronic Near-infrared Resonance
Resonance
enhanced multiphoton ionization (REMPI) Laser-induced

X-ray and Photoelectron

Photoelectron Atomic Emission

Nucleon

Gamma Mössbauer

Radiowave

NMR Terahertz ESR/EPR Ferromagnetic resonance

Others

Acoustic resonance spectroscopy Auger spectroscopy Astronomical spectroscopy Cavity ring down spectroscopy Circular Dichroism
Circular Dichroism
spectroscopy Coherent anti-Stokes Raman spectroscopy Cold vapour atomic fluorescence spectroscopy Conversion electron mössbauer spectroscopy Correlation spectroscopy Deep-level transient spectroscopy Dual polarisation interferometry Electron
Electron
phenomenological spectroscopy EPR spectroscopy Force spectroscopy Fourier transform spectroscopy Glow-discharge optical emission spectroscopy Hadron spectroscopy Hyperspectral imaging Inelastic electron tunneling spectroscopy Inelastic neutron scattering Laser-Induced Breakdown Spectroscopy Mössbauer spectroscopy Neutron
Neutron
spin echo Photoacoustic spectroscopy Photoemission spectroscopy Photothermal spectroscopy Pump-probe spectroscopy Raman optical activity
Raman optical activity
spectroscopy Raman spectroscopy Saturated spectroscopy Scanning tunneling spectroscopy Spectrophotometry Time-resolved spectroscopy Time-Stretch Thermal infrared spectroscopy Video spectroscopy Vibrational circular dichroism Vibrational spectroscopy of linear molecules X-ray photoelectron spectroscopy

v t e

Molecules
Molecules
detected in outer space

Molecules

Diatomic

Aluminium monochloride Aluminium monofluoride Aluminium monoxide Argonium Carbon
Carbon
monophosphide Carbon
Carbon
monosulfide Carbon
Carbon
monoxide Carborundum Cyanogen
Cyanogen
radical Diatomic carbon Fluoromethylidynium Hydrogen
Hydrogen
chloride Hydrogen
Hydrogen
fluoride Hydrogen
Hydrogen
(molecular) Hydroxyl radical Iron(II) oxide Magnesium monohydride cation Methylidyne radical Nitric oxide Nitrogen
Nitrogen
(molecular) Nitrogen
Nitrogen
monohydride Nitrogen
Nitrogen
sulfide Oxygen
Oxygen
(molecular) Phosphorus monoxide Phosphorus mononitride Potassium chloride Silicon carbide Silicon mononitride Silicon monoxide Silicon monosulfide Sodium chloride Sodium iodide Sulfur monohydride Sulfur monoxide Titanium oxide

Triatomic

Aluminium hydroxide Aluminium isocyanide Amino radical Carbon
Carbon
dioxide Carbonyl sulfide CCP radical Chloronium Diazenylium Dicarbon monoxide Disilicon carbide Ethynyl radical Formyl radical Hydrogen
Hydrogen
cyanide (HCN) Hydrogen
Hydrogen
isocyanide (HNC) Hydrogen
Hydrogen
sulfide Hydroperoxyl Iron cyanide Isoformyl Magnesium cyanide Magnesium isocyanide Methylene radical N2H+ Nitrous oxide Nitroxyl Ozone Phosphaethyne Potassium cyanide Protonated molecular hydrogen Sodium cyanide Sodium hydroxide Silicon carbonitride c-Silicon dicarbide Silicon naphthalocyanine Sulfur dioxide Thioformyl Thioxoethenylidene Titanium dioxide Tricarbon Water

Four atoms

Acetylene Ammonia Cyanic acid Cyanoethynyl Cyclopropynylidyne Formaldehyde Fulminic acid HCCN Hydrogen
Hydrogen
peroxide Hydromagnesium isocyanide Isocyanic acid Isothiocyanic acid Ketenyl Methylene amidogen Methyl radical Propynylidyne Protonated carbon dioxide Protonated hydrogen cyanide Silicon tricarbide Thioformaldehyde Tricarbon
Tricarbon
monoxide Tricarbon
Tricarbon
sulfide Thiocyanic acid

Five atoms

Ammonium
Ammonium
ion Butadiynyl Carbodiimide Cyanamide Cyanoacetylene Cyanoformaldehyde Cyanomethyl Cyclopropenylidene Formic acid Isocyanoacetylene Ketene Methane Methoxy
Methoxy
radical Methylenimine Propadienylidene Protonated formaldehyde Protonated formaldehyde Silane Silicon-carbide cluster

Six atoms

Acetonitrile Cyanobutadiynyl radical E-Cyanomethanimine Cyclopropenone Diacetylene Ethylene Formamide HC4N Ketenimine Methanethiol Methanol Methyl isocyanide Pentynylidyne Propynal Protonated cyanoacetylene

Seven atoms

Acetaldehyde Acrylonitrile

Vinyl cyanide

Cyanodiacetylene Ethylene
Ethylene
oxide Hexatriynyl radical Methylacetylene Methylamine Methyl isocyanate Vinyl alcohol

Eight atoms

Acetic acid Aminoacetonitrile Cyanoallene Ethanimine Glycolaldehyde Heptatrienyl radical Hexapentaenylidene Methylcyanoacetylene Methyl formate Propenal

Nine atoms

Acetamide Cyanohexatriyne Cyanotriacetylene Dimethyl ether Ethanol Methyldiacetylene Octatetraynyl radical Propene Propionitrile

Ten atoms or more

Acetone Benzene Benzonitrile Buckminsterfullerene
Buckminsterfullerene
(C60 fullerene, buckyball) C70 fullerene Cyanodecapentayne Cyanopentaacetylene Cyanotetra-acetylene Ethylene
Ethylene
glycol Ethyl formate Methyl acetate Methyl-cyano-diacetylene Methyltriacetylene Propanal n-Propyl cyanide Pyrimidine

Deuterated molecules

Ammonia Ammonium
Ammonium
ion Formaldehyde Formyl radical Heavy water Hydrogen
Hydrogen
cyanide Hydrogen
Hydrogen
deuteride Hydrogen
Hydrogen
isocyanide Methylacetylene N2D+ Trihydrogen cation

Unconfirmed

Anthracene Dihydroxyacetone Ethyl methyl ether Glycine Graphene H2NCO+ Linear C5 Naphthalene
Naphthalene
cation Phosphine Pyrene Silylidine

Related

Abiogenesis Astrobiology Astrochemistry Atomic and molecular astrophysics Chemical formula Circumstellar envelope Cosmic dust Cosmic ray Cosmochemistry Diffuse interstellar band Earliest known life forms Extraterrestrial life Extraterrestrial liquid water Forbidden mechanism Helium hydride ion Homochirality Intergalactic dust Interplanetary medium Interstellar medium Photodissociation region Iron–sulfur world theory Kerogen Molecules
Molecules
in stars Nexus for Exoplanet System Science Organic compound Outer space PAH world hypothesis Panspermia Polycyclic aromatic hydrocarbon
Polycyclic aromatic hydrocarbon
(PAH) RNA world hypothesis Spectroscopy Tholin

Book:Chemistry Category:Astrochemistry Category:Molecules Portal:Astrobiology Portal:Astronomy Portal:Chemistry

Authority control

GND: 4056138-0 N

.