Specific volume
   HOME

TheInfoList



OR:

In
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
, the specific volume of a substance (symbol: , nu) is the quotient of the substance's
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
() to its
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
(): :\nu = \frac It is a mass-specific intrinsic property of the substance. It is the reciprocal of
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(
rho Rho (; uppercase Ρ, lowercase ρ or ; or ) is the seventeenth letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician alphabet, Phoenician letter resh . Its uppercase form uses the same ...
) and it is also related to the molar volume and
molar mass In chemistry, the molar mass () (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical substance ( element or compound) is defined as the ratio between the mass () and the amount of substance ...
: :\nu = \rho^ = \frac The standard unit of specific volume is cubic meters per kilogram (m3/kg), but other units include ft3/lb, ft3/slug, or mL/g. Specific volume for an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
is related to the molar gas constant () and the gas's
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
(),
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
(), and
molar mass In chemistry, the molar mass () (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical substance ( element or compound) is defined as the ratio between the mass () and the amount of substance ...
(): : \nu = \frac It's based on the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
, PV = , and the
amount of substance In chemistry, the amount of substance (symbol ) in a given sample of matter is defined as a ratio () between the particle number, number of elementary entities () and the Avogadro constant (). The unit of amount of substance in the International ...
, n = m/M


Applications

Specific volume is commonly applied to: * Molar volume * Volume (thermodynamics) * Partial molar volume Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: * If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume decreases. * If the chamber expands without letting gas in or out, the density decreases and the specific volume increases. * If the size of the chamber remains constant and new atoms of gas are injected, the density increases and the specific volume decreases. * If the size of the chamber remains constant and some atoms are removed, the density decreases and the specific volume increases. Specific volume is a property of materials, defined as the number of cubic meters occupied by one kilogram of a particular substance. The standard unit is the meter cubed per kilogram (m3/kg or m3·kg−1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm3/g or cm3·g−1). To convert m3/kg to cm3/g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density. If the density of a substance doubles, its specific volume, as expressed in the same base units, is cut in half. If the density drops to 1/10 its former value, the specific volume, as expressed in the same base units, increases by a factor of 10. The density of gases changes with even slight variations in temperature, while densities of liquid and solids, which are generally thought of as incompressible, will change very little. Specific volume is the inverse of the density of a substance; therefore, careful consideration must be taken account when dealing with situations that involve gases. Small changes in temperature will have a noticeable effect on specific volumes. The average density of human blood is 1060 kg/m3. The specific volume that correlates to that density is 0.00094 m3/kg. Notice that the average specific volume of blood is almost identical to that of water: 0.00100 m3/kg.


Application examples

If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation , where pressure is 2500 lbf/in2, ''R'' is 0.596, temperature is . In that case, the specific volume would equal 0.4672 in3/lb. However, if the temperature is changed to , the specific volume of the super heated steam would have changed to 0.2765 in3/lb, which is a 59% overall change. Knowing the specific volumes of two or more substances allows one to find useful information for certain applications. For a substance X with a specific volume of 0.657 cm3/g and a substance Y with a specific volume 0.374 cm3/g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm3 and substance Y has a density of 2.673 g/cm3. With this information, the specific gravities of each substance relative to one another can be found. The specific gravity of substance X with respect to Y is 0.569, while the specific gravity of Y with respect to X is 1.756. Therefore, substance X will not sink if placed on Y.


Specific volume of solutions

The specific volume of a non-ideal solution is the sum of the partial specific volumes of the components: :\nu =\frac = \frac = \sum_i w_i\cdot \bar M is the molar mass of the mixture. This can be used instead of volume, as this is intensive property tied to the system.


Table of common specific volumes

The table below displays densities and specific volumes for various common substances that may be useful. The values were recorded at standard temperature and pressure, which is defined as air at 0 °C (273.15 K, 32 °F) and 1 atm (101.325 kN/m2, 101.325 kPa, 14.7 psia, 0 psig, 30 in Hg, 760 torr). * values not taken at standard temperature and pressure


References

{{Authority control Thermodynamic properties Volume V Mechanical quantities