Spark-gap transmitter
   HOME

TheInfoList



OR:

A spark-gap transmitter is an obsolete type of radio transmitter which generates
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s by means of an electric spark."Radio Transmitters, Early" in Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a tr ...
, from 1887 to the end of World War I. German physicist
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The uni ...
built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties. A fundamental limitation of spark-gap transmitters is that they generate a series of brief transient pulses of radio waves called damped waves; they are unable to produce the
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
s used to carry
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sou ...
(sound) in modern AM or FM radio transmission. So spark-gap transmitters could not transmit audio, and instead transmitted information by
radiotelegraphy Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term ''wireless telegraphy'' was also used for other experimental technologies for t ...
; the operator switched the transmitter on and off with a
telegraph key A telegraph key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wir ...
, creating pulses of radio waves to spell out text messages in
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
. The first practical spark gap transmitters and receivers for radiotelegraphy communication were developed by
Guglielmo Marconi Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi ...
around 1896. One of the first uses for spark-gap transmitters was on ships, to communicate with shore and broadcast a distress call if the ship was sinking. They played a crucial role in maritime rescues such as the 1912 RMS ''Titanic'' disaster. After World War I, vacuum tube transmitters were developed, which were less expensive and produced continuous waves which had a greater range, produced less interference, and could also carry audio, making spark transmitters obsolete by 1920. The radio signals produced by spark-gap transmitters are electrically "noisy"; they have a wide bandwidth, creating radio frequency interference (RFI) that can disrupt other radio transmissions. This type of radio emission has been prohibited by international law since 1934.Individual nations enforce this prohibition in their communication laws. In the United States, Federal Communications Commission (FCC) regulations make it a felony to operate a spark transmitter:


Theory of operation

Electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
s are radiated by
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
s when they are accelerated.
Radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s, electromagnetic waves of radio
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
, can be generated by time-varying
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
s, consisting of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s flowing through a conductor which suddenly change their velocity, thus accelerating. A
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
discharged through an electric spark across a
spark gap A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductor ...
between two conductors was the first device known which could generate radio waves. The spark itself doesn't produce the radio waves, it merely serves to excite resonant
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the up ...
oscillating
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
s in the conductors of the attached circuit. The conductors radiate the energy in this oscillating current as radio waves. Due to the inherent
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
of circuit conductors, the discharge of a capacitor through a low enough resistance (such as a spark) is
oscillatory Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
; the charge flows rapidly back and forth through the spark gap for a brief period, charging the conductors on each side alternately positive and negative, until the oscillations die away. A practical spark gap transmitter consists of these parts: *A high-voltage
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
, to transform the low-
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
electricity from the power source, a battery or electric outlet, to a high enough voltage (from a few kilovolts to 75-100 kilovolts in powerful transmitters) to jump across the spark gap. The transformer charges the capacitor. In low-power transmitters powered by batteries this was usually an
induction coil An induction coil or "spark coil" ( archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. p.98 ...
(Ruhmkorff coil). *One or more resonant circuits (tuned circuits or tank circuits) which create
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the up ...
electrical
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendul ...
s when excited by the spark. A resonant circuit consists of a
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
(in early days a type called a
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
) which stores high-voltage electricity from the transformer, and a coil of wire called an
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
or tuning coil, connected together. The values of the capacitance and inductance determine the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of the radio waves produced. **The earliest spark-gap transmitters before 1897 did not have a resonant circuit; the antenna performed this function, acting as a resonator. However, this meant that the electromagnetic energy produced by the transmitter was dissipated across a wide band, thereby limiting its effective range to a few kilometers at most. **Most spark transmitters had two resonant circuits coupled together with an air core transformer called a ''
resonant transformer A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional part ...
'' or ''oscillation transformer''. This was called an ''inductively-coupled'' transmitter. The spark gap and capacitor connected to the primary winding of the transformer made one resonant circuit, which generated the oscillating current. The oscillating current in the primary winding created an oscillating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
that induced current in the secondary winding. The antenna and ground were connected to the secondary winding. The capacitance of the antenna resonated with the secondary winding to make a second resonant circuit. The two resonant circuits were tuned to the same
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
. The advantage of this circuit was that the oscillating current persisted in the antenna circuit even after the spark stopped, creating long, ringing, lightly damped waves, in which the energy was concentrated in a narrower bandwidth, creating less interference to other transmitters. *A
spark gap A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductor ...
which acts as a voltage-controlled switch in the resonant circuit, discharging the capacitor through the coil. *An
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
, a metal conductor such as an elevated wire, that radiates the power in the oscillating electric currents from the resonant circuit into space as
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s. *A
telegraph key A telegraph key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wir ...
to switch the transmitter on and off to communicate messages by
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...


Operation cycle

The transmitter works in a rapid repeating cycle in which the capacitor is charged to a high voltage by the transformer and discharged through the coil by a spark across the spark gap.Nahin, Paul J. (2001)
The Science of Radio: with MATLAB and Electronics Workbench demonstrations, 2nd Ed.
', p. 38-43
The impulsive spark excites the resonant circuit to "ring" like a bell, producing a brief oscillating current which is radiated as electromagnetic waves by the antenna. The transmitter repeats this cycle at a rapid rate, so the spark appeared continuous, and the radio signal sounded like a whine or buzz in a
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
. #The cycle begins when current from the transformer charges up the capacitor, storing positive electric charge on one of its plates and negative charge on the other. While the capacitor is charging the spark gap is in its nonconductive state, preventing the charge from escaping through the coil. #When the voltage on the capacitor reaches the breakdown voltage of the spark gap, the air in the gap ionizes, starting an electric spark, reducing its resistance to a very low level (usually less than one
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
). This closes the circuit between the capacitor and the coil. #The charge on the capacitor discharges as a current through the coil and spark gap. Due to the
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
of the coil when the capacitor voltage reaches zero the current doesn't stop but keeps flowing, charging the capacitor plates with an opposite polarity, until the charge is stored in the capacitor again, on the opposite plates. Then the process repeats, with the charge flowing in the opposite direction through the coil. This continues, resulting in oscillating currents flowing rapidly back and forth between the plates of the capacitor through the coil and spark gap. #The resonant circuit is connected to the antenna, so these oscillating currents also flow in the antenna, charging and discharging it. The current creates an oscillating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
around the antenna, while the voltage creates an oscillating
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
. These oscillating fields radiate away from the antenna into space as an
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
; a radio wave. #The energy in the resonant circuit is limited to the amount of energy originally stored in the capacitor. The radiated radio waves, along with the heat generated by the spark, uses up this energy, causing the oscillations to decrease quickly in
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
to zero. When the oscillating electric current in the primary circuit has decreased to a point where it is insufficient to keep the air in the spark gap ionized, the spark stops, opening the resonant circuit, and stopping the oscillations. In a transmitter with two resonant circuits, the oscillations in the secondary circuit and antenna may continue some time after the spark has terminated. Then the transformer begins charging the capacitor again, and the whole cycle repeats. The cycle is very rapid, taking less than a millisecond. With each spark, this cycle produces a radio signal consisting of an oscillating
sinusoidal A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
wave that increases rapidly to a high
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
and decreases exponentially to zero, called a damped wave. The
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
f of the oscillations, which is the frequency of the emitted radio waves, is equal to the
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
of the resonant circuit, determined by the
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
C of the capacitor and the
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of th ...
L of the coil: :f = \frac \sqrt \, The transmitter repeats this cycle rapidly, so the output is a repeating string of damped waves. This is equivalent to a radio signal
amplitude modulated Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude (signal strength) of the wave is varied in proportion to t ...
with a steady frequency, so it could be demodulated in a radio receiver by a
rectifying A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inver ...
AM detector, such as the
crystal detector A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (dem ...
or Fleming valve used during the wireless telegraphy era. The
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of repetition (spark rate) is in the
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sou ...
range, typically 50 to 1000 sparks per second, so in a receiver's earphones the signal sounds like a steady tone, whine, or buzz. In order to transmit information with this signal, the operator turns the transmitter on and off rapidly by tapping on a switch called a
telegraph key A telegraph key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wir ...
in the primary circuit of the transformer, producing sequences of short (dot) and long (dash) strings of damped waves, to spell out messages in
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
. As long as the key is pressed the spark gap fires repetitively, creating a string of pulses of radio waves, so in a receiver the keypress sounds like a buzz; the entire Morse code message sounds like a sequence of buzzes separated by pauses. In low-power transmitters the key directly breaks the primary circuit of the supply transformer, while in high-power transmitters the key operates a heavy duty
relay A relay Electromechanical relay schematic showing a control coil, four pairs of normally open and one pair of normally closed contacts An automotive-style miniature relay with the dust cover taken off A relay is an electrically operated switch ...
that breaks the primary circuit.


Charging circuit and spark rate

The circuit which charges the capacitors, along with the spark gap itself, determines the ''spark rate'' of the transmitter, the number of sparks and resulting damped wave pulses it produces per second, which determines the tone of the signal heard in the receiver. The spark rate should not be confused with the ''frequency'' of the transmitter, which is the number of sinusoidal oscillations per second in each damped wave. Since the transmitter produces one pulse of radio waves per spark, the output power of the transmitter was proportional to the spark rate, so higher rates were favored. Spark transmitters generally used one of three types of power circuits:


Induction coil

An
induction coil An induction coil or "spark coil" ( archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. p.98 ...
(Ruhmkorff coil) was used in low-power transmitters, usually less than 500 watts, often battery-powered. An induction coil is a type of transformer powered by DC, in which a vibrating arm switch contact on the coil called an interrupter repeatedly breaks the circuit that provides current to the primary winding, causing the coil to generate pulses of high voltage. When the primary current to the coil is turned on, the primary winding creates a magnetic field in the iron core which pulls the springy interrupter arm away from its contact, opening the switch and cutting off the primary current. Then the magnetic field collapses, creating a pulse of high voltage in the secondary winding, and the interrupter arm springs back to close the contact again, and the cycle repeats. Each pulse of high voltage charged up the capacitor until the spark gap fired, resulting in one spark per pulse. Interrupters were limited to low spark rates of 20–100 Hz, sounding like a low buzz in the receiver. In powerful induction coil transmitters, instead of a vibrating interrupter, a mercury turbine interrupter was used. This could break the current at rates up to several thousand hertz, and the rate could be adjusted to produce the best tone.


AC transformer

In higher power transmitters powered by AC, a
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
steps the input voltage up to the high voltage needed. The sinusoidal voltage from the transformer is applied directly to the capacitor, so the voltage on the capacitor varies from a high positive voltage, to zero, to a high negative voltage. The spark gap is adjusted so sparks only occur near the maximum voltage, at peaks of the AC
sine wave A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
, when the capacitor was fully charged. Since the AC sine wave has two peaks per cycle, ideally two sparks occurred during each cycle, so the spark rate was equal to twice the frequency of the AC power (often multiple sparks occurred during the peak of each half cycle). The spark rate of transmitters powered by 50 or 60 Hz mains power was thus 100 or 120 Hz. However higher audio frequencies cut through interference better, so in many transmitters the transformer was powered by a motor–alternator set, an
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
with its shaft turning an alternator, that produced AC at a higher frequency, usually 500 Hz, resulting in a spark rate of 1000 Hz.


Quenched spark gap

The speed at which signals may be transmitted is naturally limited by the time taken for the spark to be extinguished. If, as described above, the conductive plasma does not, during the zero points of the alternating current, cool enough to extinguish the spark, a 'persistent spark' is maintained until the stored energy is dissipated, permitting practical operation only up to around 60 signals per second. If active measures are taken to break the arc (either by blowing air through the spark or by lengthening the spark gap), a much shorter "quenched spark" may be obtained. A simple quenched spark system still permits several oscillations of the capacitor circuit in the time taken for the spark to be quenched. With the spark circuit broken, the transmission frequency is solely determined by the antenna resonant circuit, which permits simpler tuning.


Rotary spark gap

In a transmitter with a "rotary" spark gap ''(below)'', the capacitor was charged by AC from a high-voltage transformer as above, and discharged by a spark gap consisting of electrodes spaced around a wheel which was spun by an electric motor, which produced sparks as they passed by a stationary electrode. The spark rate was equal to the rotations per second times the number of spark electrodes on the wheel. It could produce spark rates up to several thousand hertz, and the rate could be adjusted by changing the speed of the motor. The rotation of the wheel was usually synchronized to the AC
sine wave A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
so the moving electrode passed by the stationary one at the peak of the sine wave, initiating the spark when the capacitor was fully charged, which produced a musical tone in the receiver. When tuned correctly in this manner, the need for external cooling or quenching airflow was eliminated, as was the loss of power directly from the charging circuit (parallel to the capacitor) through the spark.


History

The invention of the radio transmitter resulted from the convergence of two lines of research. One was efforts by inventors to devise a system to transmit
telegraph Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas ...
signals without wires. Experiments by a number of inventors had shown that electrical disturbances could be transmitted short distances through the air. However most of these systems worked not by radio waves but by electrostatic induction or
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Cle ...
, which had too short a range to be practical. In 1866 Mahlon Loomis claimed to have transmitted an electrical signal through the atmosphere between two 600 foot wires held aloft by kites on mountaintops 14 miles apart.
Thomas Edison Thomas Alva Edison (February 11, 1847October 18, 1931) was an American inventor and businessman. He developed many devices in fields such as electric power generation, mass communication, sound recording, and motion pictures. These inventi ...
had come close to discovering radio in 1875; he had generated and detected radio waves which he called "etheric currents" experimenting with high-voltage spark circuits, but due to lack of time did not pursue the matter. David Edward Hughes in 1879 had also stumbled on radio wave transmission which he received with his
carbon microphone The carbon microphone, also known as carbon button microphone, button microphone, or carbon transmitter, is a type of microphone, a transducer that converts sound to an electrical audio signal. It consists of two metal plates separated by gra ...
detector, however he was persuaded that what he observed was induction. Neither of these individuals are usually credited with the discovery of radio, because they did not understand the significance of their observations and did not publish their work before Hertz. The other was research by physicists to confirm the theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
proposed in 1864 by Scottish physicist
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
, now called
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
. Maxwell's theory predicted that a combination of oscillating electric and
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s could travel through space as an "
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
". Maxwell proposed that light consisted of electromagnetic waves of short wavelength, but no one knew how to confirm this, or generate or detect electromagnetic waves of other wavelengths. By 1883 it was theorized that accelerated electric charges could produce electromagnetic waves, and George Fitzgerald had calculated the output power of a
loop antenna A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that is usually fed by a balanced source or feeding a balanced load. Within this physical description there are two (possibly three) ...
.Fitzgerald, George "On the energy lost by radiation from alternating electric currents", ''Report of the British Association for the Advancement of Science'', 1883, reprinted in Fitzgerald in a brief note published in 1883 suggested that electromagnetic waves could be generated practically by discharging a capacitor rapidly; the method used in spark transmitters,Fitzgerald, George "On a method of producing electromagnetic disturbances of comparatively short wavelength", ''Report of the British Association for the Advancement of Science'', 1883, p.405, reprinted in . The text in full: "This is by utilizing the alternating currents produced when an accumulator is discharged through a small resistance. It would be possible to produce waves of ten meters wavelength, or even less" however there is no indication that this inspired other inventors. The division of the history of spark transmitters into the different types below follows the organization of the subject used in many wireless textbooks. Translated from German by A. E. Selig. Zenneck describes the Marconi, Braun, and Wien transmitters on p. 173, and the early "lineal" or Hertz oscillators on p. 41.


Hertzian oscillators

German physicist
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The uni ...
in 1887 built the first experimental spark gap transmitters during his historic experiments to demonstrate the existence of
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
s predicted by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
in 1864, in which he discovered
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s,Hertz, H., "On very rapid electric oscillations", ''Wiedemann's Annalen'', Vol. 31, p. 421, 1887 reprinted in translated to English by D. E. Jones Sarkar, et al. (2006) ''History of Wireless'', p. 19, 260, 331-332
/ref> which were called "Hertzian waves" until about 1910. Hertz was inspired to try spark excited circuits by experiments with "Reiss spirals", a pair of flat spiral
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
s with their conductors ending in spark gaps. A
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
capacitor discharged through one spiral, would cause sparks in the gap of the other spiral. File:Heinrich Hertz discovering radio waves.png, Heinrich Hertz discovering radio waves with his spark oscillator ''(at rear)'' File:Hertz drawing of his spark transmitter 1888.png, Hertz's drawing of one of his spark oscillators. ''(A,A')'' antenna, ''(J)'' induction coil File:Hertzian spark radio transmitter 1902.jpg, Hertzian spark oscillator, 1902. Visible are antenna consisting of 2 wires ending in metal plates ''(E)'', spark gap ''(D)'', induction coil ''(A)'', auto battery ''(B)'', and
telegraph key A telegraph key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wir ...
''(C)''. File:Hertz spark gap transmitter and parabolic antenna.png, Hertz's 450 MHz transmitter; a 26 cm dipole with spark gap at focus of a sheet metal parabolic reflector File:Microwave Apparatus - Jagadish Chandra Bose Museum - Bose Institute - Kolkata 2011-07-26 4051.JPG,
Jagadish Chandra Bose Sir Jagadish Chandra Bose (;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contribution ...
in 1894 was the first person to produce millimeter waves; his spark oscillator ''(in box, right)'' generated 60 GHz (5 mm) waves using 3 mm metal ball resonators. File:Lodge spark oscillator 1894.png, Microwave spark oscillator demonstrated by Oliver Lodge in 1894. Its 5-inch resonator ball produced waves of around 12 cm or 2.5 GHz
See circuit diagram. Hertz's transmitters consisted of a
dipole antenna In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole wi ...
made of a pair of collinear metal rods of various lengths with a
spark gap A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductor ...
''(S)'' between their inner ends and metal balls or plates for
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
''(C)'' attached to the outer ends. The two sides of the antenna were connected to an
induction coil An induction coil or "spark coil" ( archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. p.98 ...
(Ruhmkorff coil) ''(T)'' a common lab power source which produced pulses of high voltage, 5 to 30 kV. In addition to radiating the waves, the antenna also acted as a
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
( resonator) which generated the oscillating currents. High-voltage pulses from the induction coil ''(T)'' were applied between the two sides of the antenna. Each pulse stored electric charge in the capacitance of the antenna, which was immediately discharged by a spark across the spark gap. The spark excited brief oscillating
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
s of current between the sides of the antenna. The antenna radiated the energy as a momentary pulse of radio waves; a damped wave. The frequency of the waves was equal to the
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
of the antenna, which was determined by its length; it acted as a half-wave dipole, which radiated waves roughly twice the length of the antenna (e.g. 15 MHz for 1 m, or 1.5 GHz for 1 cm). Hertz detected the waves by observing tiny sparks in micrometer spark gaps ''(M)'' in loops of wire which functioned as resonant receiving antennas. Oliver Lodge was also experimenting with spark oscillators at this time and came close to discovering radio waves before Hertz, but his focus was on waves on wires, not in free space.Sarkar, et al. (2006) ''History of Wireless'', p. 226
/ref> Hertz and the first generation of physicists who built these "Hertzian oscillators", such as
Jagadish Chandra Bose Sir Jagadish Chandra Bose (;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contribution ...
,
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. A ...
, George Fitzgerald, Frederick Trouton, Augusto Righi and Oliver Lodge, were mainly interested in radio waves as a scientific phenomenon, and largely failed to foresee its possibilities as a communication technology.Sarkar, et al. (2006) ''History of Wireless'', p. 260, 263-265
/ref> Due to the influence of Maxwell's theory, their thinking was dominated by the similarity between radio waves and light waves; they thought of radio waves as an invisible form of light. By analogy with light, they assumed that radio waves only traveled in straight lines, so they thought radio transmission was limited by the visual
horizon The horizon is the apparent line that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This line divides all viewing directions based on whether i ...
like existing optical signalling methods such as
semaphore Semaphore (; ) is the use of an apparatus to create a visual signal transmitted over distance. A semaphore can be performed with devices including: fire, lights, flags, sunlight, and moving arms. Semaphores can be used for telegraphy when arr ...
, and therefore was not capable of longer distance communication. As late as 1894 Oliver Lodge speculated that the maximum distance Hertzian waves could be transmitted was a half mile. To investigate the similarity between radio waves and
light wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) l ...
s, these researchers concentrated on producing short
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
high-frequency waves with which they could duplicate classic
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
experiments with radio waves, using quasioptical components such as prisms and lenses made of
paraffin wax Paraffin wax (or petroleum wax) is a soft colorless solid derived from petroleum, coal, or oil shale that consists of a mixture of hydrocarbon molecules containing between 20 and 40 carbon atoms. It is solid at room temperature and begins t ...
, sulfur, and pitch (resin), pitch and wire diffraction gratings.Sarkar, et al. (2006) ''History of Wireless'', p. 476-484
/ref> Their short antennas generated radio waves in the very high frequency, VHF, ultra high frequency, UHF, or microwave bands. In his various experiments, Hertz produced waves with frequencies from 50 to 450 MHz, roughly the frequencies used today by broadcast television transmitters. Hertz used them to perform historic experiments demonstrating
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
s, refraction, diffraction, polarization (waves), polarization and interference (wave propagation), interference of radio waves.Hertz, H., "On radiation", ''Wiedemann's Annalen'', Vol. 36, December 13, 1988, p. 769, reprinted in translated to English by D. E. Jones He also measured the speed of radio waves, showing they traveled at the same speed as light. These experiments established that light and radio waves were both forms of Maxwell's
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
s, differing only in frequency. Augusto Righi and
Jagadish Chandra Bose Sir Jagadish Chandra Bose (;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contribution ...
around 1894 generated microwaves of 12 and 60 GHz respectively, using small metal balls as resonator-antennas.Sarkar, et al. (2006) ''History of Wireless'', p. 291-308
/ref> The high frequencies produced by Hertzian oscillators could not travel beyond the horizon. The dipole resonators also had low capacitance and couldn't store much electric charge, charge, limiting their power output. Therefore, these devices were not capable of long distance transmission; their reception range with the primitive receivers employed was typically limited to roughly 100 yards (100 meters).


Non-syntonic transmitters

Italian radio pioneer
Guglielmo Marconi Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi ...
was one of the first people to believe that radio waves could be used for long distance communication, and singlehandedly developed the first practical
radiotelegraphy Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term ''wireless telegraphy'' was also used for other experimental technologies for t ...
transmitters and radio receiver, receivers,Hong, Sungook (2001) ''Wireless: From Marconi's Black-box to the Audion'', Chapter 1 & 2
/ref> mainly by combining and tinkering with the inventions of others. Starting at age 21 on his family's estate in Italy, between 1894 and 1901 he conducted a long series of experiments to increase the transmission range of Hertz's spark oscillators and receivers. He was unable to communicate beyond a half-mile until 1895, when he discovered that the range of transmission could be increased greatly by replacing one side of the Hertzian dipole antenna in his transmitter and receiver with a connection to ground (electricity), Earth and the other side with a long wire antenna suspended high above the ground.Hong, Sungook (2001) ''Wireless: From Marconi's Black-box to the Audion'', p. 20-21
/ref>Aitken, Hugh (2014) ''Syntony and Spark: The origins of radio'', p. 195-218
/ref> These antennas functioned as quarter-wave antenna, quarter-wave monopole antennas. The length of the antenna determined the wavelength of the waves produced and thus their frequency. Longer, lower frequency waves have less attenuation with distance. As Marconi tried longer antennas, which radiated lower frequency waves, probably in the medium frequency, MF band around 2 MHz, he found that he could transmit further. Another advantage was that these vertical antennas radiated vertical polarization, vertically polarized waves, instead of the horizontal polarization, horizontally polarized waves produced by Hertz's horizontal antennas. These longer vertically polarized waves could travel beyond the horizon, because they propagated as a ground wave that followed the contour of the Earth. Under certain conditions they could also reach beyond the horizon by reflecting off layers of charged particles (ions) in the upper atmosphere, later called skywave propagation. Marconi did not understand any of this at the time; he simply found empirically that the higher his vertical antenna was suspended, the further it would transmit. After failing to interest the Italian government, in 1896 Marconi moved to England, where William Preece of the British General Post Office funded his experiments. Marconi patented his radio system 2 June 1896,British patent 189612039 Marconi, Guglielmo
Improvements in transmitting electrical impulses and signals, and in apparatus therefore
', Applied: 2 June 1896, full specification: 2 March 1897, accepted: 2 July 1897. British patents allowed the full specification to be submitted after the application. Marconi's monopole antenna did not appear in his initial June 1896 application but in his March 1897 specification. Corresponding US patent 586193, Marconi, Guglielmo,
Transmitting electrical signals
', filed 7 December 1896, accepted: 13 July 1897
often considered the first wireless patent.Morse (1925) ''Radio: Beam and Broadcast'', p. 24-26
/ref> In May 1897 he transmitted 14 km (8.7 miles), on 27 March 1899 he transmitted across the English Channel, 46 km (28 miles), in fall 1899 he extended the range to 136 km (85 miles),Hong, Sungook (2001) ''Wireless: From Marconi's Black-box to the Audion'', p. 60-61
/ref> and by January 1901 he had reached 315 km (196 miles). These demonstrations of wireless
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
communication at increasingly long distances convinced the world that radio, or "wireless telegraphy" as it was called, was not just a scientific curiosity but a commercially useful communication technology. In 1897 Marconi started a company to produce his radio systems, which became the Marconi Wireless Telegraph Company. and radio communication began to be used commercially around 1900. His first large contract in 1901 was with the insurance firm Lloyd's of London to equip their ships with wireless stations. Marconi's company dominated marine radio throughout the spark era. Inspired by Marconi, in the late 1890s other researchers also began developing competing spark radio communication systems; Alexander Stepanovich Popov, Alexander Popov in Russia, Eugène Ducretet in France, Reginald Fessenden and Lee de Forest in America, and Karl Ferdinand Braun, Adolf Slaby, and Georg von Arco in Germany who in 1903 formed the Telefunken Co., Marconi's chief rival.Huurdeman, Anton (2003) ''The Worldwide History of Telecommunications'', p. 212-215
/ref>


Disadvantages

The primitive transmitters prior to 1897 had no resonant circuits (also called LC circuits, tank circuits, or tuned circuits), the spark gap was in the antenna, which functioned as the resonator to determine the frequency of the radio waves.Nahin, Paul J. (2001)
The Science of Radio: with MATLAB and Electronics Workbench demonstrations, 2nd Ed.
', p. 46
archived
/ref> These were called "unsyntonized" or "plain antenna" transmitters. The average power output of these transmitters was low, because due to its low capacitance the antenna was a highly damping ratio, damped oscillator (in modern terminology, it had very low Q factor). During each spark the energy stored in the antenna was quickly radiated away as radio waves, so the oscillations decayed to zero quickly.Ashley, Hayward (1912) ''Wireless Telegraphy and Wireless Telephony: An understandable presentation of the science of wireless transmission of intelligence''
p. 34-36
The radio signal consisted of brief pulses of radio waves, repeating tens or at most a few hundreds of times per second, separated by comparatively long intervals of no output. The power radiated was dependent on how much
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
could be stored in the antenna before each spark, which was proportional to the
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
of the antenna. To increase their capacitance to ground, antennas were made with multiple parallel wires, often with capacitive toploads, in the "harp", "cage", "umbrella antenna, umbrella", "inverted-L", and "T-antenna, T" antennas characteristic of the "spark" era. The only other way to increase the energy stored in the antenna was to charge it up to very high voltages. However the voltage that could be used was limited to about 100 kV by corona discharge which caused charge to leak off the antenna, particularly in wet weather, and also energy lost as heat in the longer spark. A more significant drawback of the large damping ratio, damping was that the radio transmissions were electrically "noisy"; they had a very large bandwidth.Hong, Sungook (2001) ''Wireless: From Marconi's Black-box to the Audion'', p. 90-93
/ref> These transmitters did not produce waves of a single
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
, but a continuous band of frequencies. They were essentially radio noise sources radiating energy over a large part of the radio spectrum, which made it impossible for other transmitters to be heard. When multiple transmitters attempted to operate in the same area, their broad signals overlapped in frequency and radio frequency interference, interfered with each other. The
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
s used also had no resonant circuits, so they had no way of selecting one signal from others besides the broad resonance of the antenna, and responded to the transmissions of all transmitters in the vicinity. An example of this interference problem was an embarrassing public debacle in August 1901 when Marconi, Lee de Forest, and another group attempted to report the New York Yacht Race to newspapers from ships with their untuned spark transmitters.Lee, Thomas H. 2004 ''The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Ed.'', p. 6-7
/ref> The Morse code transmissions interfered, and the reporters on shore failed to receive any information from the garbled signals.


Syntonic transmitters

It became clear that for multiple transmitters to operate, some system of "selective signaling" had to be devised to allow a receiver to select which transmitter's signal to receive, and reject the others. In 1892 William Crookes had given an influential"Crookes’s article was read very widely—and more than that, attended to and remembered—both in Europe and in the United States; there is hardly one figure important in the early days of radio who does not at some point in his memoirs or correspondence refer to the article of 1892 as having made a difference."
Aitken, Hugh (2014) ''Syntony and Spark: The origins of radio'', p. 111-116
/ref> lecture on radio in which he suggested using resonance (then called ''syntony'') to reduce the bandwidth of transmitters and receivers. Using a resonant circuit (also called tuned circuit or tank circuit) in transmitters would narrow the bandwidth of the radiated signal, it would occupy a smaller range of frequencies around its center frequency, so that the signals of transmitters "tuned" to transmit on different frequencies would no longer overlap. A receiver which had its own resonant circuit could receive a particular transmitter by "tuning" its
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
to the frequency of the desired transmitter, analogously to the way one musical instrument could be tuned to resonance with another. This is the system used in all modern radio. During the period 1897 to 1900 wireless researchers realized the advantages of "syntonic" or "tuned" systems, and added
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
s (
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
s) and
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
s (coils of wire) to transmitters and receivers, to make resonant circuits (tuned circuits, or tank circuits). Oliver Lodge, who had been researching electrical resonance for years, patented the first "syntonic" transmitter and receiver in May 1897British patent GB189711575 Lodge, O. J.
Improvements in Syntonized Telegraphy without Line Wires
' filed: May 10, 1897, granted: August 10, 1898
Lodge's explanation of his syntonic radio system is in Lodge added an
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
(coil) between the sides of his dipole antennas, which resonated with the capacitance of the antenna to make a tuned circuit. Although his complicated circuit did not see much practical use, Lodge's "syntonic" patent was important because it was the first to propose a radio transmitter and receiver containing resonant circuits which were tuned to resonance with each other. In 1911 when the patent was renewed the Marconi Company was forced to buy it to protect its own syntonic system against infringement suits. The resonant circuit functioned analogously to a tuning fork, storing oscillating electrical energy, increasing the Q factor of the circuit so the oscillations were less damped. Another advantage was the frequency of the transmitter was no longer determined by the length of the antenna but by the resonant circuit, so it could easily be changed by adjustable taps on the coil. The antenna was brought into resonance with the tuned circuit using loading coils. The energy in each spark, and thus the power output, was no longer limited by the capacitance of the antenna but by the size of the capacitor in the resonant circuit. In order to increase the power very large capacitor banks were used. The form that the resonant circuit took in practical transmitters was the inductively-coupled circuit described in the next section. File:Small spark gap transmitter.jpg, Demonstration inductively coupled spark transmitter 1909, with parts labeled File:Spark gap wireless station 1910.jpg, Amateur inductively coupled spark transmitter and receiver, 1910. The spark gap is in glass bulb ''(center right)'' next to tuning coil, on top of box containing glass plate capacitor File:Marconi spark transmitter on SS Minnetonka 1902.jpg, Standard Marconi inductively coupled transmitter on ship 1902. Spark gap is in front of induction coil, lower right. The spiral oscillation transformer is in the wooden box on the wall above the Leyden jars. File:Leyden jars Nauen wireless telegraphy station 1908.jpg, Telefunken 25 kW long distance transmitter built 1906 at Nauen Transmitter Station, Nauen, Germany, showing large 360 Leyden jar 400 μF capacitor bank ''(rear)'' and vertical spark gaps ''(right)''


Inductive coupling

In developing these syntonic transmitters, researchers found it impossible to achieve low damping with a single resonant circuit. A resonant circuit can only have low damping (high Q, narrow bandwidth) if it is a "closed" circuit, with no energy dissipating components.Aitken, Hugh 2014 ''Syntony and Spark: The origins of radio'', p. 108-109
/ref> But such a circuit does not produce radio waves. A resonant circuit with an antenna radiating radio waves (an "open" tuned circuit) loses energy quickly, giving it high damping (low Q, wide bandwidth). There was a fundamental tradeoff between a circuit which produced persistent oscillations which had narrow bandwidth, and one which radiated high power. The solution found by a number of researchers was to use two resonant circuits in the transmitter, with their coils inductive coupling, inductively (magnetically) coupled, making a
resonant transformer A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional part ...
(called an ''oscillation transformer'');Sarkar et al. (2006) ''History of Wireless'', p. 352-353, 355-358archive
/ref> this was called an "''inductively coupled''", "''coupled circuit''" or "''two circuit''" transmitter.Hong, Sungook (2001) ''Wireless: From Marconi's Black-box to the Audion'', p. 98-100
/ref> See circuit diagram. The primary winding of the oscillation transformer (''L1'') with the capacitor (''C1'') and spark gap (''S'') formed a "closed" resonant circuit, while the secondary winding (''L2'') was connected to the wire antenna (''A'') and ground, forming an "open" resonant circuit with the capacitance of the antenna (''C2''). Both circuits were tuned to the same
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
. The advantage of the inductively coupled circuit was that the "loosely coupled" transformer transferred the oscillating energy of the tank circuit to the radiating antenna circuit gradually, creating long "ringing" waves. A second advantage was that it allowed a large primary capacitance ''(C1)'' to be used which could store a lot of energy, increasing the power output enormously. Powerful transoceanic transmitters often had huge
Leyden jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It ty ...
capacitor banks filling rooms ''(see pictures above)''. The receiver in most systems also used two inductively coupled circuits, with the antenna an "open" resonant circuit coupled through an oscillation transformer to a "closed" resonant circuit containing the detector. A radio system with a "two circuit" (inductively coupled) transmitter and receiver was called a "four circuit" system. The first person to use resonant circuits in a radio application was Nikola Tesla, who invented the
resonant transformer A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional part ...
in 1891."''Tesla is entitled to either distinct priority or independent discovery of''" three concepts in wireless theory: "''(1) the idea of inductive coupling between the driving and the working circuits (2) the importance of tuning both circuits, i.e. the idea of an 'oscillation transformer' (3) the idea of a capacitance loaded open secondary circuit''" At a March 1893 St. Louis lectureTesla, N., "''On light and other high frequency phenomena''", in Thomas Cummerford Martin (1894)
The Inventions, Researches and Writings of Nikola Tesla, 2nd Ed.
', p. 294-373
he had demonstrated a wireless system that, although it was intended for wireless power transmission, had many of the elements of later radio communication systems.Aitken, Hugh 2014 ''Syntony and Spark: The origins of radio'', p. 125-136, 254-255, 259
/ref> A grounded capacitance-loaded spark-excited
resonant transformer A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional part ...
(his ''Tesla coil'') attached to an elevated wire monopole antenna transmitted radio waves, which were received across the room by a similar wire antenna attached to a receiver consisting of a second grounded resonant transformer tuned to the transmitter's frequency, which lighted a Geissler tube.Cheney, Margaret (2011) ''Tesla: Man Out Of Time'', p. 96-97
/ref> This system, patented by Tesla 2 September 1897,US Patent No. 645576, Nikola Tesla,
System of transmission of electrical energy
', filed: 2 September 1897; granted: 20 March 1900
4 months after Lodge's "syntonic" patent, was in effect an inductively coupled radio transmitter and receiver, the first use of the "four circuit" system claimed by Marconi in his 1900 patent ''(below)''. However, Tesla was mainly interested in wireless power and never developed a practical radio ''communication'' system. In addition to Tesla's system, inductively coupled radio systems were patented by Oliver Lodge in February 1898,US Patent no. 609,154 Oliver Joseph Lodge
Electric Telegraphy
filed: 1 February 1898, granted: 16 August 1898
Karl Ferdinand Braun,British patent no. 189922020 Karl Ferdinand Braun
''Improvements in or related to telegraphy without the use of continuous wires''
applied: 3 November 1899, complete specification: 30 June 1900, granted: 22 September 1900
in November 1899, and John Stone Stone in February 1900.US Patent no. 714,756, John Stone Ston
Method of electric signaling
filed: 8 February 1900, granted: 2 December 1902
Braun made the crucial discovery that low damping required "loose coupling" (reduced mutual inductance) between the primary and secondary coils. Image:US Patent 645576 Nikola Tesla 1897 System of transmission of electrical energy.png, Tesla's inductively coupled power transmitter ''(left)'' patented 2 September 1897 Image:British patent 22,020-Karl Ferdinand Braun-filed 3 November 1899-fig. 2.png, Braun's inductively coupled transmitter patented 3 November 1899 Image:US Patent 714756-John Stone Stone-Method of selective electric signaling 1900 figs 5&6.png, Stone's inductively coupled transmitter ''(left)'' and receiver ''(right)'' patented 8 February 1900 Image:Spark gap transmitter-Marconi patent 763772 fig 1.png, Marconi's inductively coupled transmitter patented 26 April 1900. Marconi at first paid little attention to syntony, but by 1900 developed a radio system incorporating features from these systems, with a two circuit transmitter and two circuit receiver, with all four circuits tuned to the same frequency, using a resonant transformer he called the "jigger". In spite of the above prior patents, Marconi in his 26 April 1900 "four circuit" or "master tuning" patentBritish patent no. 7777, Guglielmo Marconi
Improvements in apparatus for wireless telegraphy
filed: 26 April 1900, granted: 13 April 1901. Corresponding US Patent no. 763,772, Guglielmo Marconi
Apparatus for wireless telegraphy
filed: 10 November 1900, granted: 28 June 1904.
on his system claimed rights to the inductively coupled transmitter and receiver. This was granted a British patent, but the US patent office twice rejected his patent as lacking originality. Then in a 1904 appeal a new patent commissioner reversed the decision and granted the patent, on the narrow grounds that Marconi's patent by including an antenna loading coil ''(J in circuit above)'' provided the means for tuning the four circuits to the same frequency, whereas in the Tesla and Stone patents this was done by adjusting the length of the antenna. This patent gave Marconi a near monopoly of syntonic wireless telegraphy in England and America.Morse (1925) ''Radio: Beam and Broadcast'', p. 30
/ref> Tesla sued Marconi's company for patent infringement but didn't have the resources to pursue the action. In 1943 the US Supreme Court invalidated the inductive coupling claims of Marconi's patent due to the prior patents of Lodge, Tesla, and Stone, but this came long after spark transmitters had become obsolete. The inductively coupled or "syntonic" spark transmitter was the first type that could communicate at intercontinental distances, and also the first that had sufficiently narrow bandwidth that interference between transmitters was reduced to a tolerable level. It became the dominant type used during the "spark" era. A drawback of the plain inductively coupled transmitter was that unless the primary and secondary coils were very loosely coupled it radiated on two frequencies. This was remedied by the quenched-spark and rotary gap transmitters'' (below)''. In recognition of their achievements in radio, Marconi and Braun shared the 1909 Nobel Prize in physics.


First transatlantic radio transmission

Marconi decided in 1900 to attempt transatlantic communication, which would allow him to compete with submarine telegraph cables.Sarkar, et al. (2006) ''History of Wireless'', p. 387-392
/ref> This would require a major scale-up in power, a risky gamble for his company. Up to that time his small induction coil transmitters had an input power of 100 - 200 watts, and the maximum range achieved was around 150 miles. To build the first high power transmitter, Marconi hired an expert in electric power engineering, Prof. John Ambrose Fleming of University College, London, who applied power engineering principles. Fleming designed a complicated inductively-coupled transmitter ''(see circuit)'' with two cascaded spark gaps ''(S1, S2)'' firing at different rates, and three resonant circuits, powered by a 25 kW alternator ''(D)'' turned by a combustion engine. The first spark gap and resonant circuit ''(S1, C1, T2)'' generated the high voltage to charge the capacitor ''(C2)'' powering the second spark gap and resonant circuit ''(S2, C2, T3)'', which generated the output. The spark rate was low, perhaps as low as 2 - 3 sparks per second. Fleming estimated the radiated power was around 10 - 12 kW. The transmitter was built in secrecy on the coast at Poldhu, Cornwall, UK. Marconi was pressed for time because Nikola Tesla was building his own transatlantic radiotelegraphy transmitter on Long Island, New York, in a bid to be first (this was the Wardenclyffe Tower, which lost funding and was abandoned unfinished after Marconi's success). Marconi's original round 400-wire transmitting antenna collapsed in a storm 17 September 1901 and he hastily erected a temporary antenna consisting of 50 wires suspended in a fan shape from a cable between two 160 foot poles. The frequency used is not known precisely, as Marconi did not measure wavelength or frequency, but it was between 166 and 984 kHz, probably around 500 kHz. He received the signal on the coast of St. John's, Dominion of Newfoundland, Newfoundland using an untuned coherer radio receiver, receiver with a 400 ft. wire antenna suspended from a kite. Marconi announced the first transatlantic radio transmission took place on 12 December 1901, from Poldhu, Cornwall to Signal Hill, St. John's, Signal Hill, Newfoundland, a distance of 2100 miles (3400 km). Marconi's achievement received worldwide publicity, and was the final proof that radio was a practical communication technology. The scientific community at first doubted Marconi's report. Virtually all wireless experts besides Marconi believed that radio waves traveled in straight lines, so no one (including Marconi) understood how the waves had managed to propagate around the 300 mile high curve of the Earth between Britain and Newfoundland. In 1902 Arthur Kennelly and Oliver Heaviside independently theorized that radio waves were reflected by a layer of ionization, ionized atoms in the upper atmosphere, enabling them to return to Earth beyond the horizon. In 1924 Edward V. Appleton demonstrated the existence of this layer, now called the "Kennelly–Heaviside layer" or "E-layer", for which he received the 1947 Nobel Prize in Physics. Knowledgeable sources today doubt whether Marconi actually received this transmission. Ionospheric conditions should not have allowed the signal to be received during the daytime at that range. Marconi knew the Morse code signal to be transmitted was the letter 'S' (three dots). He and his assistant could have mistaken atmospheric radio noise ("static") in their earphones for the clicks of the transmitter. Marconi made many subsequent transatlantic transmissions which clearly establish his priority, but reliable transatlantic communication was not achieved until 1907 with more powerful transmitters.


Quenched-spark transmitters

File:Telefunken ship radio room 1919.jpg, Ship radio room with 1.5 kW Telefunken quenched-spark transmitter File:Ship spark transmitter tuned circuit 1921.jpg, Tuned circuit of transmitter. ''(top)'' quenched gap, ''(center)'' oscillation transformer, Leyden jars File:Quenched spark gap 1915.jpg, Quenched spark gap from transmitter, left. The handle turns a screw which puts pressure on the stack of cylindrical electrodes, allowing the gap widths to be adjusted. File:Quenched spark gap - cutaway drawing.png, Cross section of portion of quenched spark gap, consisting of metal disks ''(F)'' separated by thin insulating mica washers ''(M)'' to make multiple microscopic spark gaps ''(S)'' in series File:Powerful spark gap transmitter.png, A powerful quenched-spark transmitter in Australia. The 6 cylinders in front of the Leyden jars are the quenched spark gaps. The inductively-coupled transmitter had a more complicated output waveform than the non-syntonic transmitter, due to the interaction of the two resonant circuits. The two magnetically coupled tuned circuits acted as a Oscillation, coupled oscillator, producing beat frequency, beats ''(see top graphs)''. The oscillating radio frequency energy was passed rapidly back and forth between the primary and secondary resonant circuits as long as the spark continued.Huurdeman, Anton (2003) ''The Worldwide History of Telecommunications'', p. 271-272
This author misspells the word "quenched" as "squenched"
Each time the energy returned to the primary, some was lost as heat in the spark. In addition, unless the coupling was very loose the oscillations caused the transmitter to transmit on two separate frequencies. Since the narrow passband of the receiver's resonant circuit could only be tuned to one of these frequencies, the power radiated at the other frequency was wasted. This troublesome backflow of energy to the primary circuit could be prevented by extinguishing (quenching) the spark at the right instant, after all the energy from the capacitors was transferred to the antenna circuit. Bernard Leggett (1921) ''Wireless Telegraphy, with special reference to the quenched-spark system'', p. 55-59
/ref> Inventors tried various methods to accomplish this, such as air blasts and Elihu Thomson's magnetic blowout. In 1906, a new type of spark gap was developed by German physicist Max Wien, called the ''series'' or ''quenched'' gap. Bernard Leggett (1921) ''Wireless Telegraphy, with special reference to the quenched-spark system'', p. 60-63
/ref> A quenched gap consisted of a stack of wide cylindrical electrodes separated by thin insulating spacer rings to create many narrow spark gaps in series, of around . The wide surface area of the electrodes terminated the ionization in the gap quickly by cooling it after the current stopped. In the inductively coupled transmitter, the narrow gaps extinguished ("quenched") the spark at the first nodal point (Q) when the primary current momentarily went to zero after all the energy had been transferred to the secondary winding ''(see lower graph)''. Since without the spark no current could flow in the primary circuit, this effectively uncoupled the secondary from the primary circuit, allowing the secondary resonant circuit and antenna to oscillate completely free of the primary circuit after that (until the next spark). This produced output power centered on a single frequency instead of two frequencies. It also eliminated most of the energy loss in the spark, producing very lightly damped, long "ringing" waves, with decrements of only 0.08 to 0.25 (a Q of 12-38) and consequently a very "pure", narrow bandwidth radio signal. Another advantage was the rapid quenching allowed the time between sparks to be reduced, allowing higher spark rates of around 1000 Hz to be used, which had a musical tone in the receiver which penetrated radio static better. The quenched gap transmitter was called the "singing spark" system. The German wireless giant Telefunken Co., Marconi's rival, acquired the patent rights and used the quenched spark gap in their transmitters.


Rotary gap transmitters

A second type of spark gap that had a similar quenching effect was the "rotary gap", invented by Tesla in 1896British patent GB189620981 Henry Harris Lake for Nikola Tesla
Improvements relating to the production, regulation, and utilization of electric currents of high frequency, and apparatus therefore
' filed: 22 September 1896, granted: 21 November 1896
and applied to radio transmitters by Reginald Fessenden and others. It consisted of multiple electrodes equally spaced around a disk rotor spun at high speed by a motor, which created sparks as they passed by a stationary electrode. By using the correct motor speed, the rapidly separating electrodes extinguished the spark after the energy had been transferred to the secondary. The rotating wheel also kept the electrodes cooler, important in high-power transmitters. File:Rotary spark gap 1919.jpg, A typical rotary spark gap used in low-power transmitters File:Rotary spark gap transmitter.jpg, Small rotary spark transmitter, 1918 File:Murdock 1 kW rotary gap spark transmitter 1914.jpg, 1 kilowatt rotary spark transmitter, 1914. File:Fessenden synchronous spark transmitter.jpg, Reginald Fessenden, Fessenden's 35 kW synchronous rotary spark transmitter, built 1905 at Brant Rock, Massachusetts, with which he achieved the first 2 way transatlantic communication in 1906 on 88 kHz. File:Navy NAA spark transmitter Arlington 1913.jpg, US Navy 100 kW rotary gap transmitter built by Fessenden in 1913 at Arlington, Virginia. It transmitted on 113 kHz to Europe, and broadcast the US's first radio time signal. There were two types of rotary spark transmitter: *''Nonsynchronous'': In the earlier rotary gaps, the motor was not synchronized with the frequency of the AC transformer, so the spark occurred at random times in the AC cycle of the voltage applied to the capacitor. The problem with this was the interval between the sparks was not constant. The voltage on the capacitor when a moving electrode approached the stationary electrode varied randomly between zero and the peak AC voltage. The exact time when the spark started varied depending on the gap length the spark could jump, which depended on the voltage. The resulting random phase variation of successive damped waves resulted in a signal that had a "hissing" or "rasping" sound in the receiver. *''Synchronous'': In this type, invented by Fessenden around 1904, the rotor was turned by a synchronous motor in synchronism with the cycles of the AC voltage to the transformer, so the spark occurred at the same points of the voltage sine wave each cycle. Usually it was designed so there was one spark each half cycle, adjusted so the spark occurred at the peak voltage when the capacitor was fully charged. Thus the spark had a steady frequency equal to a multiple of the AC line frequency, which created harmonic (music), harmonics with the line frequency. The synchronous gap was said to produce a more musical, easily heard tone in the receiver, which cut through interference better. To reduce interference caused by the "noisy" signals of the burgeoning numbers of spark transmitters, the 1912 US Congress "Act to Regulate Radio Communication" required that "''the logarithmic decrement per oscillation in the wave trains emitted by the transmitter shall not exceed two tenths''" included in ''Radio Communication Laws of the United States'', July 27, 1914 edition, Department of Commerce, United States government printing office (this is equivalent to a Q factor of 15 or greater). Virtually the only spark transmitters which could satisfy this condition were the quenched-spark and rotary gap types above, and they dominated wireless telegraphy for the rest of the spark era.


Marconi's timed spark system

In 1912 in his high-power stations Marconi developed a refinement of the rotary discharger called the "timed spark" system, which generated what was probably the nearest to a
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
that sparks could produce.Sarkar, et al. (2006) ''History of Wireless'', p. 399
/ref> He used several identical resonant circuits in parallel, with the capacitors charged by a DC dynamo. These were discharged sequentially by multiple rotary discharger wheels on the same shaft to create overlapping damped waves shifted progressively in time, which were added together in the oscillation transformer so the output was a superposition principle, superposition of damped waves. The speed of the discharger wheel was controlled so that the time between sparks was equal to an integer multiple of the wave period. Therefore, oscillations of the successive wave trains were in phase and reinforced each other. The result was essentially a continuous sinusoidal wave, whose amplitude varied with a ripple at the spark rate. This system was necessary to give Marconi's transoceanic stations a narrow enough bandwidth that they didn't interfere with other transmitters on the narrow very low frequency, VLF band. Timed spark transmitters achieved the longest transmission range of any spark transmitters, but these behemoths represented the end of spark technology.


The "spark" era

The first application of radio was on ships, to keep in touch with shore, and send out a distress call if the ship were sinking. The Marconi Company built a string of shore stations and in 1904 established the first Morse code distress call, the letters ''CQD'', used until the Second International Radiotelegraphic Convention in 1906 at which ''SOS'' was agreed on. The first significant marine rescue due to radiotelegraphy was the 23 January 1909 sinking of the luxury liner RMS Republic (1903), RMS ''Republic'', in which 1500 people were saved. Spark transmitters and the crystal radio, crystal receivers used to receive them were simple enough that they were widely built by hobbyists. During the first decades of the 20th century this exciting new high tech hobby attracted a growing community of "radio amateurs", many of them teenage boys, who used their homebuilt sets recreationally to contact distant amateurs and chat with them by Morse code, and relay messages. Low-power amateur transmitters ("squeak boxes") were often built with "trembler coil, trembler" ignition coils from early automobiles such as the Ford Model T. In the US prior to 1912 there was no government regulation of radio, and a chaotic "wild west" atmosphere prevailed, with stations transmitting without regard to other stations on their frequency, and deliberately interfering with each other. The expanding numbers of non-syntonic broadband spark transmitters created uncontrolled congestion in the airwaves, interfering with commercial and military wireless stations. The sinking 14 April 1912 increased public appreciation for the role of radio, but the loss of life brought attention to the disorganized state of the new radio industry, and prompted regulation which corrected some abuses. Although the ''Titanic'' radio operator's ''CQD'' distress calls summoned the which rescued 705 survivors, the rescue operation was delayed four hours because the nearest ship, the SS Californian, SS ''Californian'', only a few miles away, did not hear the ''Titanic''s call as its radio operator had gone to bed. This was held responsible for most of the 1500 deaths. Existing international regulations required all ships with more than 50 passengers to carry wireless equipment, but after the disaster subsequent regulations mandated ships have enough radio officers so that a round-the-clock radio watch could be kept. In the US 1912 Radio Act, licenses were required for all radio transmitters, maximum damping of transmitters was limited to a decrement of 0.2 to get old noisy non-syntonic transmitters off the air, and amateurs were mainly restricted to the unused frequencies above 1.5 MHz and output power of 1 kilowatt. The largest spark transmitters were powerful transoceanic radiotelegraphy stations with input power of 100 - 300 kW. Beginning about 1910, industrial countries built global networks of these stations to exchange commercial and diplomatic telegram traffic with other countries and communicate with their overseas colonies. During World War I, long distance radiotelegraphy became a strategic defensive technology, as it was realized a nation without radio could be isolated by an enemy cutting its submarine telegraph cables. Most of these networks were built by the two giant wireless corporations of the age: the British Marconi Wireless Telegraph Co, Marconi Company, which constructed the Imperial Wireless Chain to link the possessions of the British Empire, and the German Telefunken Co. which was dominant outside the British Empire. Marconi transmitters used the timed spark rotary discharger, while Telefunken transmitters used its quenched spark gap technology. punched paper tape, Paper tape machines were used to transmit Morse code text at high speed. To achieve a maximum range of around 3000 – 6000 miles, transoceanic stations transmitted mainly in the very low frequency (VLF) band, from 50 kHz to as low as 15 – 20 kHz. At these wavelengths even the largest antennas were electrically short, a tiny fraction of a wavelength tall, and so had low radiation resistance (often below 1 ohm), so these transmitters required enormous wire umbrella antenna, umbrella and T-antenna, flattop antennas up to several miles long with large capacitive toploads, to achieve adequate efficiency. The antenna required a large loading coil at the base, 6 – 10 feet tall, to make it resonant with the transmitter.


Continuous waves

Although their damping had been reduced as much as possible, spark transmitters still produced damped waves, which due to their large bandwidth caused interference between transmitters. The spark also made a very loud noise when operating, produced corrosive ozone gas, eroded the spark electrodes, and could be a fire hazard. Despite its drawbacks, most wireless experts believed along with Marconi that the impulsive "whipcrack" of a spark was necessary to produce radio waves that would communicate long distances. From the beginning, physicists knew that another type of waveform, continuous wave, continuous
sinusoidal A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
waves (CW), had theoretical advantages over damped waves for radio transmission.George Fitzgerald as early as 1892 described a spark oscillator as similar to the oscillations produced when a cork pops out of a winebottle, and said what was needed was a continuous electromagnetic "whistle". He realized that if the resistance of a tuned circuit were made zero or negative it would produce continuous oscillations, and tried to make an electronic oscillator by exciting a tuned circuit with negative resistance from a dynamo, what would today be called a parametric oscillator, but was unsuccessful. G. Fitzgerald, ''On the Driving of Electromagnetic Vibrations by Electromagnetic and Electrostatic Engines'', read at the January 22, 1892 meeting of the Physical Society of London, in Because their energy is essentially concentrated at a single frequency, in addition to causing almost no interference to other transmitters on adjacent frequencies, continuous wave transmitters could transmit longer distances with a given output power. They could also be modulation, modulated with an audio signal to carry sound. The problem was no techniques were known for generating them. The efforts described above to reduce the damping of spark transmitters can be seen as attempts to make their output approach closer to the ideal of a continuous wave, but spark transmitters could not produce true continuous waves. Beginning about 1904, continuous wave transmitters were developed using new principles, which competed with spark transmitters. Continuous waves were first generated by two short-lived technologies: *The arc converter (Poulsen arc) transmitter, invented by Valdemar Poulsen in 1904 used the negative resistance of a continuous electric arc in a hydrogen atmosphere to excite oscillations in a resonant circuit. *The Alexanderson alternator transmitter, developed between 1906 and 1915 by Reginald Fessenden and Ernst Alexanderson, was a huge rotating alternating current generator ( alternator) driven by an electric motor at a high enough speed that it produced
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the up ...
current in the very low frequency range. These transmitters, which could produce power outputs of up to one megawatt, slowly replaced the spark transmitter in high-power radiotelegraphy stations. However spark transmitters remained popular in two way communication stations because most continuous wave transmitters were not capable of a mode called "break in" or "listen in" operation. With a spark transmitter, when the telegraph key was up between Morse symbols the carrier wave was turned off and the receiver was turned on, so the operator could listen for an incoming message. This allowed the receiving station, or a third station, to interrupt or "break in" to an ongoing transmission. In contrast, these early CW transmitters had to operate continuously; the carrier wave was not turned off between Morse code symbols, words, or sentences but just detuned, so a local radio receiver, receiver could not operate as long as the transmitter was powered up. Therefore, these stations could not receive messages until the transmitter was turned off.


Obsolescence

All these early technologies were superseded by the vacuum tube positive feedback, feedback electronic oscillator, invented in 1912 by Edwin Armstrong and Alexander Meissner, which used the triode vacuum tube invented in 1906 by Lee de Forest. Vacuum tube oscillators were a far cheaper source of continuous waves, and could be easily modulated to carry sound. Due to the development of the first high-power transmitting tubes by the end of World War I, in the 1920s tube transmitters replaced the arc converter and alternator transmitters, as well as the last of the old noisy spark transmitters. The 1927 International Radiotelegraph Convention in Washington, D.C. saw a political battle to finally eliminate spark radio. Spark transmitters were long obsolete at this point, and radio broadcasting, broadcast radio audiences and aviation authorities were complaining of the disruption to radio reception that noisy legacy marine spark transmitters were causing. But shipping interests vigorously fought a blanket prohibition on damped waves, due to the capital expenditure that would be required to replace ancient spark equipment that was still being used on older ships. The Convention prohibited licensing of new land spark transmitters after 1929. Damped wave radio emission, called Class B, was banned after 1934 except for emergency use on ships. This loophole allowed shipowners to avoid replacing spark transmitters, which were kept as emergency backup transmitters on ships through World War II.


Legacy

One legacy of spark-gap transmitters is that radio operators were regularly nicknamed "Sparky" long after the devices ceased to be used. Even today, the German verb ''funken'', literally, "to spark", also means "to send a radio message". The spark gap oscillator was also used in nonradio applications, continuing long after it became obsolete in radio. In the form of the Tesla coil and Oudin coil it was used until the 1940s in the medical field of diathermy for deep body heating. High oscillating voltages of hundreds of thousands of volts at frequencies of 0.1 - 1 MHz from a Tesla coil were applied directly to the patient's body. The treatment was not painful, because currents in the radio frequency range do not cause the physiological reaction of electric shock. In 1926 William T. Bovie discovered that RF currents applied to a scalpel could cut and cauterize tissue in medical operations, and spark oscillators were used as electrosurgery generators or "Bovies" as late as the 1980s. In the 1950s a Japanese toy company, Matsudaya, produced a line of cheap remote control toy trucks, boats and robots called Radicon, which used a low-power spark transmitter in the controller as an inexpensive way to produce the radio control signals. The signals were received in the toy by a coherer receiver. Spark gap oscillators are still used to generate high-frequency high voltage needed to initiate welding arcs in gas tungsten arc welding. Powerful spark gap pulse generators are still used to simulate electromagnetic pulse, EMPs.


See also

*History of radio *Invention of radio *Amateur radio *Antique radio *Coherer *Crystal radio


References


Further reading

* *


External links


Alternator, Arc and SparkMassie Spark Transmitter
The new England Wireless and Steam Museum *
The Sparks Telegraph Key ReviewSpark gap transmitter history & operation
{{Authority control History of radio Radio electronics Electric arcs Electric power conversion Telegraphy