The Info List - Silk

--- Advertisement ---

is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons.[1] The best-known silk is obtained from the cocoons of the larvae of the mulberry silkworm Bombyx mori
Bombyx mori
reared in captivity (sericulture). The shimmering appearance of silk is due to the triangular prism-like structure of the silk fibre, which allows silk cloth to refract incoming light at different angles, thus producing different colors. Silk
is produced by several insects, like silk worms but generally only the silk of moth caterpillars has been used for textile manufacturing. There has been some research into other types of silk, which differ at the molecular level.[2] Silk
is mainly produced by the larvae of insects undergoing complete metamorphosis, but some insects such as webspinners and raspy crickets produce silk throughout their lives.[3] Silk
production also occurs in Hymenoptera
(bees, wasps, and ants), silverfish, mayflies, thrips, leafhoppers, beetles, lacewings, fleas, flies, and midges.[2] Other types of arthropod produce silk, most notably various arachnids such as spiders.


1 Etymology 2 History

2.1 Wild silk 2.2 China 2.3 India 2.4 Thailand 2.5 Bangladesh 2.6 Ancient Mediterranean 2.7 Middle East 2.8 Medieval and modern Europe 2.9 North America 2.10 Malaysia 2.11 Vietnam

3 Production process 4 Properties

4.1 Physical properties 4.2 Chemical properties

5 Variants

5.1 Regenerated silk fiber

6 Applications

6.1 Clothing 6.2 Furniture 6.3 Industry 6.4 Medicine 6.5 Biomaterial

6.5.1 Biocompatibility 6.5.2 Biodegradability

7 Cultivation 8 Animal rights 9 See also 10 References 11 Cited sources 12 Further reading 13 External links

Etymology The word silk comes from Old English: sioloc, from Ancient Greek: σηρικός, translit. sērikós, "silken", ultimately from an Asian source — compare Chinese sī "silk", Manchurian sirghe, Mongolian sirkek.[4] History Main article: History of silk Wild silk

Woven silk textile from tomb no 1. at Mawangdui
in Changsha, Hunan province, China, from the Western Han Dynasty, 2nd century BC

Several kinds of wild silk, which are produced by caterpillars other than the mulberry silkworm, have been known and used in China, South Asia, and Europe
since ancient times. However, the scale of production was always far smaller than for cultivated silks. There are several reasons for this: first, they differ from the domesticated varieties in colour and texture and are therefore less uniform; second, cocoons gathered in the wild have usually had the pupa emerge from them before being discovered so the silk thread that makes up the cocoon has been torn into shorter lengths; and third, many wild cocoons are covered in a mineral layer that prevents attempts to reel from them long strands of silk.[5] Thus, the only way to obtain silk suitable for spinning into textiles in areas where commercial silks are not cultivated was by tedious and labor-intensive carding. Commercial silks originate from reared silkworm pupae, which are bred to produce a white-colored silk thread with no mineral on the surface. The pupae are killed by either dipping them in boiling water before the adult moths emerge or by piercing them with a needle. These factors all contribute to the ability of the whole cocoon to be unravelled as one continuous thread, permitting a much stronger cloth to be woven from the silk. Wild silks also tend to be more difficult to dye than silk from the cultivated silkworm.[6][7] A technique known as demineralizing allows the mineral layer around the cocoon of wild silk moths to be removed,[8] leaving only variability in color as a barrier to creating a commercial silk industry based on wild silks in the parts of the world where wild silk moths thrive, such as in Africa and South America. Genetic modification
Genetic modification
of domesticated silkworms is used to facilitate the production of more useful types of silk.[9] China Main article: Silk
industry in China

A painting depicting women inspecting silk, early 12th century, ink and color on silk, by Emperor Huizong of Song.

Portrait of a silk merchant in Guangzhou, Qing dynasty, from Peabody Essex Museum

was first developed in ancient China.[10][11] The earliest example of silk has been found in tombs at the neolithic site Jiahu
in Henan, and dates back 8,500 years.[12][13] Silk
fabric from 3630 BC was used as wrapping for the body of a child from a Yangshao culture
Yangshao culture
site in Qingtaicun at Xingyang, Henan.[10][14] Legend gives credit for developing silk to a Chinese empress, Leizu (Hsi-Ling-Shih, Lei-Tzu). Silks were originally reserved for the Emperors of China
for their own use and gifts to others, but spread gradually through Chinese culture
Chinese culture
and trade both geographically and socially, and then to many regions of Asia. Because of its texture and lustre, silk rapidly became a popular luxury fabric in the many areas accessible to Chinese merchants. Silk
was in great demand, and became a staple of pre-industrial international trade. In July 2007, archaeologists discovered intricately woven and dyed silk textiles in a tomb in Jiangxi
province, dated to the Eastern Zhou Dynasty
Zhou Dynasty
roughly 2,500 years ago.[15] Although historians have suspected a long history of a formative textile industry in ancient China, this find of silk textiles employing "complicated techniques" of weaving and dyeing provides direct evidence for silks dating before the Mawangdui-discovery and other silks dating to the Han Dynasty
Han Dynasty
(202 BC-220 AD).[15] Silk
is described in a chapter on mulberry planting by Si Shengzhi of the Western Han (206 BC – 9 AD). There is a surviving calendar for silk production in an Eastern Han (25–220 AD) document. The two other known works on silk from the Han period are lost.[10] The first evidence of the long distance silk trade is the finding of silk in the hair of an Egyptian mummy of the 21st dynasty, c.1070 BC.[16] The silk trade reached as far as the Indian subcontinent, the Middle East, Europe, and North Africa. This trade was so extensive that the major set of trade routes between Europe
and Asia
came to be known as the Silk
Road. The Emperors of China
strove to keep knowledge of sericulture secret to maintain the Chinese monopoly. Nonetheless sericulture reached Korea
with technological aid from China
around 200 BC,[17] the ancient Kingdom of Khotan
Kingdom of Khotan
by AD 50,[18] and India
by AD 140.[19] In the ancient era, silk from China
was the most lucrative and sought-after luxury item traded across the Eurasian continent,[20] and many civilizations, such as the ancient Persians, benefited economically from trade.[20]

Chinese silk making process

The silkworms and mulberry leaves are placed on trays.

Twig frames for the silkworms are prepared.

The cocoons are weighed.

The cocoons are soaked and the silk is wound on spools.

The silk is woven using a loom.

India Main article: Silk
in the Indian subcontinent

sari weaving at Kanchipuram

has a long history in India. It is known as Resham in eastern and north India, and Pattu in southern parts of India. Recent archaeological discoveries in Harappa
and Chanhu-daro
suggest that sericulture, employing wild silk threads from native silkworm species, existed in South Asia
South Asia
during the time of the Indus Valley Civilization (now in Pakistan) dating between 2450 BC and 2000 BC, while "hard and fast evidence" for silk production in China
dates back to around 2570 BC.[21][22] Shelagh Vainker, a silk expert at the Ashmolean Museum
Ashmolean Museum
in Oxford, who sees evidence for silk production in China
"significantly earlier" than 2500–2000 BC, suggests, "people of the Indus civilization either harvested silkworm cocoons or traded with people who did, and that they knew a considerable amount about silk."[21] India
is the second largest producer of silk in the world after China. About 97% of the raw mulberry silk comes from five Indian states, namely, Andhra Pradesh, Karnataka, Jammu and Kashmir, Tamil Nadu
Tamil Nadu
and West Bengal.[23] North Bangalore, the upcoming site of a $20 million " Silk
City" Ramanagara
and Mysore, contribute to a majority of silk production in Karnataka.[24]

Antheraea assamensis, the endemic species in the state of Assam, India

A traditional Banarasi sari
Banarasi sari
with gold brocade

In Tamil Nadu, mulberry cultivation is concentrated in the Coimbatore, Erode, Tiruppur, Salem and Dharmapuri
districts. Hyderabad, Andhra Pradesh, and Gobichettipalayam, Tamil Nadu, were the first locations to have automated silk reeling units in India.[25] India
is also the largest consumer of silk in the world. The tradition of wearing silk sarees for marriages and other auspicious ceremonies is a custom in Assam
and southern parts of India. Silk
is considered to be a symbol of royalty, and, historically, silk was used primarily by the upper classes. Silk
garments and sarees produced in Kanchipuram, Pochampally, Dharmavaram, Mysore, Arani in the south, Banaras
in the north, Bhagalpur
and Murshidabad
in the east are well recognized. In the northeastern state of Assam, three different types of silk are produced, collectively called Assam
silk: Muga, Eri and Pat silk. Muga, the golden silk, and Eri are produced by silkworms that are native only to Assam. Thailand Main article: Thai silk Silk
is produced year-round in Thailand
by two types of silkworms, the cultured Bombycidae and wild Saturniidae. Most production is after the rice harvest in the southern and northeastern parts of the country. Women traditionally weave silk on hand looms and pass the skill on to their daughters, as weaving is considered to be a sign of maturity and eligibility for marriage. Thai silk
Thai silk
textiles often use complicated patterns in various colours and styles. Most regions of Thailand
have their own typical silks. A single thread filament is too thin to use on its own so women combine many threads to produce a thicker, usable fiber. They do this by hand-reeling the threads onto a wooden spindle to produce a uniform strand of raw silk. The process takes around 40 hours to produce a half kilogram of silk. Many local operations use a reeling machine for this task, but some silk threads are still hand-reeled. The difference is that hand-reeled threads produce three grades of silk: two fine grades that are ideal for lightweight fabrics, and a thick grade for heavier material. The silk fabric is soaked in extremely cold water and bleached before dyeing to remove the natural yellow coloring of Thai silk
Thai silk
yarn. To do this, skeins of silk thread are immersed in large tubs of hydrogen peroxide. Once washed and dried, the silk is woven on a traditional hand-operated loom.[26] Bangladesh Main article: Rajshahi

Rajshahi silk
Rajshahi silk
fibers, Rajshahi.

The Rajshahi
Division of northern Bangladesh is the hub of the country's silk industry. There are three types of silk produced in the region: mulberry, endi and tassar. Bengali silk was a major item of international trade for centuries. It was known as Ganges silk in medieval Europe. Bengal
was the leading exporter of silk between the 16th and 19th centuries.[27] Ancient Mediterranean

The Gunthertuch, an 11th-century silk celebrating a Byzantine emperor's triumph

In the Odyssey, 19.233, when Odysseus, while pretending to be someone else, is questioned by Penelope about her husband's clothing, he says that he wore a shirt "gleaming like the skin of a dried onion" (varies with translations, literal translation here)[28] which could refer to the lustrous quality of silk fabric. Aristotle
wrote of Coa vestis, a wild silk textile from Kos. Sea silk
Sea silk
from certain large sea shells was also valued. The Roman Empire
Roman Empire
knew of and traded in silk, and Chinese silk was the most highly priced luxury good imported by them.[20] During the reign of emperor Tiberius, sumptuary laws were passed that forbade men from wearing silk garments, but these proved ineffectual.[29] The Historia Augusta
Historia Augusta
mentions that the 3rd Century AD emperor Elagabalus
was the first Roman to wear garments of pure silk, whereas it had been customary to wear fabrics of silk/cotton or silk/linen blends.[30] Despite the popularity of silk, the secret of silk-making only reached Europe
around AD 550, via the Byzantine Empire. Legend has it that monks working for the emperor Justinian I smuggled silkworm eggs to Constantinople
in hollow canes from China. All top-quality looms and weavers were located inside the Great Palace complex in Constantinople, and the cloth produced was used in imperial robes or in diplomacy, as gifts to foreign dignitaries. The remainder was sold at very high prices. Middle East In the Torah, a scarlet cloth item called in Hebrew "sheni tola'at" שני תולעת – literally "crimson of the worm" – is described as being used in purification ceremonies, such as those following a leprosy outbreak (Leviticus 14), alongside cedar wood and hyssop (za'atar). Eminent scholar and leading medieval translator of Jewish sources and books of the Bible
into Arabic, Rabbi Saadia Gaon, translates this phrase explicitly as "crimson silk" – חריר קרמז حرير قرمز. In Islamic
teachings, Muslim men are forbidden to wear silk. Many religious jurists believe the reasoning behind the prohibition lies in avoiding clothing for men that can be considered feminine or extravagant.[31] There are disputes regarding the amount of silk a fabric can consist of (e.g., whether a small decorative silk piece on a cotton caftan is permissible or not) for it to be lawful for men to wear, but the dominant opinion of most Muslim scholars is that the wearing of silk by men is forbidden. Modern attire has raised a number of issues, including, for instance, the permissibility of wearing silk neckties, which are masculine articles of clothing. Despite injunctions against silk for men, silk has retained its popularity in the Islamic
world because of its permissibility for women, and due to the presence of non-Muslim communities. The Muslim Moors
brought silk with them to Spain during their conquest of the Iberian Peninsula. Medieval and modern Europe

satin leaf, wood sticks and guards, c. 1890

Italy was the most important producer of silk during the Medieval age. The first center to introduce silk production to Italy was the city of Catanzaro
during the 11th century in the region of Calabria. The silk of Catanzaro
supplied almost all of Europe
and was sold in a large market fair in the port of Reggio Calabria, to Spanish, Venetian, Genovese and Dutch merchants. Catanzaro
became the lace capital of the world with a large silkworm breeding facility that produced all the laces and linens used in the Vatican. The city was world-famous for its fine fabrication of silks, velvets, damasks and brocades.[32] Another notable center was the Italian city-state of Lucca which largely financed itself through silk-production and silk-trading, beginning in the 12th century. Other Italian cities involved in silk production were Genoa, Venice
and Florence. The Silk
Exchange in Valencia from the 15th century—where previously in 1348 also perxal (percale) was traded as some kind of silk—illustrates the power and wealth of one of the great Mediterranean mercantile cities.[33][34] Silk
was produced in and exported from the province of Granada, Spain, especially the Alpujarras
region, until the Moriscos, whose industry it was, were expelled from Granada
in 1571.[35][36] Since the 15th century, silk production in France has been centered around the city of Lyon where many mechanic tools for mass production were first introduced in the 17th century.

"La charmante rencontre", rare 18th century embroidery in silk of Lyon (private collection)

James I attempted to establish silk production in England, purchasing and planting 100,000 mulberry trees, some on land adjacent to Hampton Court Palace, but they were of a species unsuited to the silk worms, and the attempt failed. In 1732 John Guardivaglio set up a silk throwing enterprise at Logwood mill in Stockport; in 1744, Burton Mill was erected in Macclesfield; and in 1753 Old Mill was built in Congleton.[37] These three towns remained the centre of the English silk throwing industry until silk throwing was replaced by silk waste spinning. British enterprise also established silk filature in Cyprus in 1928. In England in the mid-20th century, raw silk was produced at Lullingstone Castle
Lullingstone Castle
in Kent. Silkworms were raised and reeled under the direction of Zoe Lady Hart Dyke, later moving to Ayot St Lawrence in Hertfordshire in 1956.[38]

Medieval and modern Europe

made from silk.

Bed covered with silk

A hundred year old pattern of silk called "Almgrensrosen"

The necktie originates from the cravat, a neckband made from silk[39][40][41]

– the traditional silken bra in Vietnam

North America King James I introduced silk-growing to the American colonies around 1619, ostensibly to discourage tobacco planting. The Shakers
in Kentucky adopted the practice. In the 19th century a new attempt at a silk industry began with European-born workers in Paterson, New Jersey, and the city became a silk center in the United States. Manchester, Connecticut
Manchester, Connecticut
emerged as center of the silk industry in America from the late 19th through the mid-20th century. The Cheney Brothers Historic District showcases mills refurbished as apartments and includes nearby museums. World War II
World War II
interrupted the silk trade from Asia, and silk prices increased dramatically.[42] U.S. industry began to look for substitutes, which led to the use of synthetics such as nylon. Synthetic silks have also been made from lyocell, a type of cellulose fiber, and are often difficult to distinguish from real silk (see spider silk for more on synthetic silks). Malaysia In Terengganu, which is now part of Malaysia, a second generation of silkworm was being imported as early as 1764 for the country's silk textile industry, especially songket.[43] However, since the 1980s, Malaysia
is no longer engaged in sericulture but does plant mulberry trees. Vietnam In Vietnamese legend, silk appeared in the sixth dynasty of Hùng Vương. Production process The process of silk production is known as sericulture.[44] The entire production process of silk can be divided into several steps which are typically handled by different entities[clarification needed]. Extracting raw silk starts by cultivating the silkworms on mulberry leaves. Once the worms start pupating in their cocoons, these are dissolved in boiling water in order for individual long fibres to be extracted and fed into the spinning reel.[45] To produce 1 kg of silk, 104 kg of mulberry leaves must be eaten by 3000 silkworms. It takes about 5000 silkworms to make a pure silk kimono.[46]:104 The major silk producers are China
(54%) and India
(14%).[47] Other statistics:[48]

Top Ten Cocoons (Reelable) Producers — 2005

Country Production (Int $1000) Footnote Production (1000 kg) Footnote

 People's Republic of China 978,013 C 290,003 F

 India 259,679 C 77,000 F

 Uzbekistan 57,332 C 17,000 F

 Brazil 37,097 C 11,000 F

 Iran 20,235 C 6,088 F

 Thailand 16,862 C 5,000 F

 Vietnam 10,117 C 3,000 F

 North Korea 5,059 C 1,500 F

 Romania 3,372 C 1,000 F

 Japan 2,023 C 600 F

No symbol = official figure, F = FAO estimate,*= Unofficial figure, C = Calculated figure; Production in Int $1000 have been calculated based on 1999–2001 international prices Source: Food And Agricultural Organization of United Nations: Economic And Social Department: The Statistical Division

The environmental impact of silk production is potentially large when compared with other natural fibers. A life cycle assessment of Indian silk production shows that the production process has a large carbon and water footprint, mainly due to the fact that it is an animal-derived fiber and more inputs such as fertilizer and water are needed per unit of fiber produced.[49] Properties

Models in silk dresses at the MoMo Falana fashion show

Physical properties Silk
fibers from the Bombyx mori
Bombyx mori
silkworm have a triangular cross section with rounded corners, 5–10 μm wide. The fibroin-heavy chain is composed mostly of beta-sheets, due to a 59-mer amino acid repeat sequence with some variations.[50] The flat surfaces of the fibrils reflect light at many angles, giving silk a natural sheen. The cross-section from other silkworms can vary in shape and diameter: crescent-like for Anaphe and elongated wedge for tussah. Silkworm fibers are naturally extruded from two silkworm glands as a pair of primary filaments (brin), which are stuck together, with sericin proteins that act like glue, to form a bave. Bave diameters for tussah silk can reach 65 μm. See cited reference for cross-sectional SEM photographs.[51]

Raw silk of domesticated silk worms, showing its natural shine.

has a smooth, soft texture that is not slippery, unlike many synthetic fibers. Silk
is one of the strongest natural fibers, but it loses up to 20% of its strength when wet. It has a good moisture regain of 11%. Its elasticity is moderate to poor: if elongated even a small amount, it remains stretched. It can be weakened if exposed to too much sunlight. It may also be attacked by insects, especially if left dirty. One example of the durable nature of silk over other fabrics is demonstrated by the recovery in 1840 of silk garments from a wreck of 1782: 'The most durable article found has been silk; for besides pieces of cloaks and lace, a pair of black satin breeches, and a large satin waistcoat with flaps, were got up, of which the silk was perfect, but the lining entirely gone ... from the thread giving way ... No articles of dress of woollen cloth have yet been found.'[52] Silk
is a poor conductor of electricity and thus susceptible to static cling. Silk
has a high emissivity for infrared light, making it feel cool to the touch.[53] Unwashed silk chiffon may shrink up to 8% due to a relaxation of the fiber macrostructure, so silk should either be washed prior to garment construction, or dry cleaned. Dry cleaning
Dry cleaning
may still shrink the chiffon up to 4%. Occasionally, this shrinkage can be reversed by a gentle steaming with a press cloth. There is almost no gradual shrinkage nor shrinkage due to molecular-level deformation. Natural and synthetic silk is known to manifest piezoelectric properties in proteins, probably due to its molecular structure.[54] Silkworm
silk was used as the standard for the denier, a measurement of linear density in fibers. Silkworm
silk therefore has a linear density of approximately 1 den, or 1.1 dtex.

Comparison of silk fibers[55] Linear density (dtex) Diameter (μm) Coeff. variation

Moth: Bombyx mori 1.17 12.9 24.8%

Spider: Argiope aurentia 0.14 3.57 14.8%

Chemical properties Silk
emitted by the silkworm consists of two main proteins, sericin and fibroin, fibroin being the structural center of the silk, and serecin being the sticky material surrounding it. Fibroin
is made up of the amino acids Gly-Ser-Gly-Ala-Gly-Ala and forms beta pleated sheets. Hydrogen bonds form between chains, and side chains form above and below the plane of the hydrogen bond network. The high proportion (50%) of glycine allows tight packing. This is because glycine's R group is only a hydrogen and so is not as sterically constrained. The addition of alanine and serine makes the fibres strong and resistant to breaking. This tensile strength is due to the many interceded hydrogen bonds, and when stretched the force is applied to these numerous bonds and they do not break. Silk
is resistant to most mineral acids, except for sulfuric acid, which dissolves it. It is yellowed by perspiration. Chlorine bleach will also destroy silk fabrics. Variants Regenerated silk fiber RSF is produced by chemically dissolving silkworm cocoons, leaving their molecular structure intact. The silk fibers dissolve into tiny thread-like structures known as microfibrils. The resulting solution is extruded through a small opening, causing the microfibrils to reassemble into a single fiber. The resulting material is reportedly twice as stiff as silk.[56] Applications

filaments being unravelled from silk cocoons, Cappadocia, Turkey, 2007.

Clothing Silk's absorbency makes it comfortable to wear in warm weather and while active. Its low conductivity keeps warm air close to the skin during cold weather. It is often used for clothing such as shirts, ties, blouses, formal dresses, high fashion clothes, lining, lingerie, pajamas, robes, dress suits, sun dresses and Eastern folk costumes. For practical use, silk is excellent as clothing that protects from many biting insects that would ordinarily pierce clothing, such as mosquitoes and horseflies. Fabrics that are often made from silk include charmeuse, habutai, chiffon, taffeta, crepe de chine, dupioni, noil, tussah, and shantung, among others. Furniture Silk's attractive lustre and drape makes it suitable for many furnishing applications. It is used for upholstery, wall coverings, window treatments (if blended with another fiber), rugs, bedding and wall hangings.[citation needed] Industry Silk
had many industrial and commercial uses, such as in parachutes, bicycle tires, comforter filling and artillery gunpowder bags.[57] Medicine A special manufacturing process removes the outer sericin coating of the silk, which makes it suitable as non-absorbable surgical sutures. This process has also recently led to the introduction of specialist silk underclothing, which has been used for skin conditions including eczema.[58][59] New uses and manufacturing techniques have been found for silk for making everything from disposable cups to drug delivery systems and holograms.[60] Biomaterial Silk
has been considered as a luxurious textile since 3630 BC. However, it started to serve also as a biomedical material for suture in surgeries decades ago. In the past 30 years, it has been widely studied and used as a biomaterial, which refers to materials used for medical applications in organisms, due to its excellent properties, including remarkable mechanical properties, comparative biocompatibility, tunable degradation rates in vitro and in vivo, the ease to load cellular growth factors (for example, BMP-2), and the ability to be processed into several other formats such as films, gels, particles, and scaffolds.[61] Silks from Bombyx mori, a kind of cultivated silkworm, are the most widely investigated silks.[62] Silks derived from Bombyx mori
Bombyx mori
are generally made of two parts: the silk fibroin fiber which contains a light chain of 25kDa and a heavy chain of 350kDa (or 390kDa[63]) linked by a single disulfide bond[64] and a glue-like protein, sericin, comprising 25 to 30 percentage by weight. Silk fibroin
Silk fibroin
contains hydrophobic Beta sheet
Beta sheet
blocks, interrupted by small hydrophilic groups. And the beta-sheets contribute much to the high mechanical strength of silk fibers, which achieves 740 MPa, tens of times that of poly(lactic acid) and hundreds of times that of collagen. This impressive mechanical strength has made silk fibroin very competitive for applications in biomaterials. Indeed, silk fibers have found their way into tendon tissue engineering,[65] where mechanical properties matter greatly. In addition, mechanical properties of silks from various kinds of silkworms vary widely, which provides more choices for their use in tissue engineering. Most products fabricated from regenerated silk are weak and brittle, with only ~1–2% of the mechanical strength of native silk fibers due to the absence of appropriate secondary and hierarchical structure,

Source Organisms[66] Tensile strength (g/den)

Tensile modulus (g/den)

Breaking strain (%)

Bombyx mori 4.3–5.2 84–121 10.0–23.4

Antheraea mylitta 2.5–4.5 66–70 26–39

Philosamia cynthia ricini 1.9–3.5 29–31 28.0–24.0

Coscinocera hercules 5 ± 1 87 ± 17 12 ± 5

Hyalophora euryalus 2.7 ± 0.9 59 ± 18 11 ± 6

Rothschildia hesperis 3.3 ± 0.8 71 ± 16 10 ± 4

Eupackardia calleta 2.8 ± 0.7 58 ± 18 12 ± 6

Rothschildia lebeau 3.1 ± 0.8 54 ± 14 16 ± 7

Antheraea oculea 3.1 ± 0.8 57 ± 15 15 ± 7

Hyalophora gloveri 2.8 ± 0.4 48 ± 13 19 ± 7

Copaxa multifenestrata 0.9 ± 0.2 39 ± 6 4 ± 3

Biocompatibility Biocompatibility, i.e., the ability to what level the silk will cause an immune response, is definitely a critical issue for biomaterials. The biocompatibility of silk arose during its increasing clinical use. Indeed, wax or silicone is usually used as a coating to avoid fraying and potential immune responses[61] when silk fibers serve as suture materials. Although the lack of detailed characterization of silk fibers, such as the extent of the removal of sericin, the surface chemical properties of coating material, and the process used, make it difficult to determine the real immune response of silk fibers in literature, it is generally believed that sericin is the major cause of immune response. Thus, the removal of sericin is an essential step to assure biocompatibility in biomaterial applications of silk. However, further research fails to prove clearly the contribution of sericin to inflammatory responses based on isolated sericin and sericin based biomaterials.[67] In addition, silk fibroin exhibits an inflammatory response similar to that of tissue culture plastic in vitro[68][69] when assessed with human mesenchymal stem cells (hMSCs) or lower than collagen and PLA when implant rat MSCs with silk fibroin films in vivo.[69] Thus, appropriate degumming and sterilization will assure the biocompatibility of silk fibroin, which is further validated by in vivo experiments on rats and pigs.[70] There are still concerns about the long-term safety of silk-based biomaterials in the human body in contrast to these promising results. Even though silk sutures serve well, they exist and interact within a limited period depending on the recovery of wounds (several weeks), much shorter than that in tissue engineering. Another concern arises from biodegradation because the biocompatibility of silk fibroin does not necessarily assure the biocompatibility of the decomposed products. In fact, different levels of immune responses[71][72] and diseases[73] have been triggered by the degraded products of silk fibroin. Biodegradability Biodegradability (also known as biodegradation)--the ability to be disintegrated by biological approaches, including bacteria, fungi, and cells—is another significant property of biomaterials today. Biodegradable materials can minimize the pain of patients from surgeries, especially in tissue engineering, there is no need of surgery in order to remove the scaffold implanted. Wang et al.[74] showed the in vivo degradation of silk via aqueous 3-D scaffolds implanted into Lewis rats. Enzymes are the means used to achieve degradation of silk in vitro. Protease XIV from Streptomyces griseus and α-chymotrypsin from bovine pancreases are the two popular enzymes for silk degradation. In addition, gamma-radiation, as well as cell metabolism, can also regulate the degradation of silk. Compared with synthetic biomaterials such as polyglycolides and polylactides, silk is obviously advantageous in some aspects in biodegradation. The acidic degraded products of polyglycolides and polylactides will decrease the pH of the ambient environment and thus adversely influence the metabolism of cells, which is not an issue for silk. In addition, silk materials can retain strength over a desired period from weeks to months as needed by mediating the content of beta sheets. Cultivation

Thai man spools silk


moths lay eggs on specially prepared paper. The eggs hatch and the caterpillars (silkworms) are fed fresh mulberry leaves. After about 35 days and 4 moltings, the caterpillars are 10,000 times heavier than when hatched and are ready to begin spinning a cocoon. A straw frame is placed over the tray of caterpillars, and each caterpillar begins spinning a cocoon by moving its head in a pattern. Two glands produce liquid silk and force it through openings in the head called spinnerets. Liquid silk is coated in sericin, a water-soluble protective gum, and solidifies on contact with the air. Within 2–3 days, the caterpillar spins about 1 mile of filament and is completely encased in a cocoon. The silk farmers then heat the cocoons to kill them, leaving some to metamorphose into moths to breed the next generation of caterpillars. Harvested cocoons are then soaked in boiling water to soften the sericin holding the silk fibers together in a cocoon shape. The fibers are then unwound to produce a continuous thread. Since a single thread is too fine and fragile for commercial use, anywhere from three to ten strands are spun together to form a single thread of silk.[75] Animal rights As the process of harvesting the silk from the cocoon kills the larvae by boiling them, sericulture has been criticized by animal welfare and rights activists.[76] Mohandas Gandhi was critical of silk production based on the Ahimsa
philosophy which led to promotion of cotton and Ahimsa
silk, a type of wild silk made from the cocoons of wild and semi-wild silk moths.[77] Since silk cultivation kills silkworms, possibly painfully,[78][better source needed] People for the Ethical Treatment of Animals (PETA) urges people not to buy silk items.[79] See also

Art silk Mommes Rayon Sea silk Silk
waste Spider
silk International Year of Natural Fibres


^ "Silk". The Free Dictionary By Farlex. Retrieved 2012-05-23.  ^ a b Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010). "Insect silk: one name, many materials". Annual Review of Entomology. 55: 171–88. doi:10.1146/annurev-ento-112408-085401. PMID 19728833.  ^ Walker AA, Weisman S, Church JS, Merritt DJ, Mudie ST, Sutherland TD (2012). " Silk
from Crickets: A New Twist on Spinning". PLoS ONE. 7 (2): e30408. Bibcode:2012PLoSO...730408W. doi:10.1371/journal.pone.0030408. PMC 3280245 . PMID 22355311.  ^ "Silk". Etymonline. Archived from the original on 14 December 2013. Retrieved 27 August 2012.  ^ Sindya N. Bhanoo (20 May 2011). " Silk
Production Takes a Walk on the Wild Side". New York Times. Archived from the original on 9 November 2012. Retrieved 26 May 2011.  ^ Hill (2004). Appendix E. ^ Hill (2009), "Appendix C: Wild Silks," pp.477–480. ^ Gheysens, T; Collins, A; Raina, S; Vollrath, F; Knight, D (2011). "Demineralization enables reeling of Wild Silkmoth cocoons" (PDF). Biomacromolecules. American Chemical Society. 12 (6): 2257–66. doi:10.1021/bm2003362. PMID 21491856. Archived (PDF) from the original on 22 September 2017.  ^ Kojima, K.; Kuwana, Y.; Sezutsu, H.; Kobayashi, I.; Uchino, K.; Tamura, T.; Tamada, Y. (2007). "A new method for the modification of fibroin heavy chain protein in the transgenic silkworm". Bioscience, Biotechnology, and Biochemistry. 71 (12): 2943–2951. doi:10.1271/bbb.70353. PMID 18071257.  ^ a b c Vainker, Shelagh (2004). Chinese Silk: A Cultural History. Rutgers University Press. pp. 20, 17. ISBN 0813534461.  ^ "Silk: History". Columbia Encyclopedia Sixth Edition. Archived from the original on 16 December 2008.  ^ "Oldest Evidence of Silk
Found in 8,500-Year-Old Tombs". Live Science. Archived from the original on 13 October 2017. Retrieved 13 October 2017.  ^ "Prehistoric silk found in Henan". The Institute of Archaeology, Chinese Academy of Social Sciences (IA CASS). Archived from the original on 4 January 2017. Retrieved 4 October 2017.  ^ " Textile
Exhibition: Introduction". Asian art. Archived from the original on 8 September 2007.  ^ a b "Chinese archaeologists make ground-breaking textile discovery in 2,500-year-old tomb". People's Daily Online. Archived from the original on 13 October 2007. Retrieved 26 August 2007.  ^ Lubec, G.; J. Holaubek; C. Feldl; B. Lubec; E. Strouhal (4 March 1993). "Use of silk in ancient Egypt". Nature. 362 (6415): 25. Bibcode:1993Natur.362...25L. doi:10.1038/362025b0.  (also available here "Archived copy". Archived from the original on 20 September 2007. Retrieved 3 May 2007. ) ^ Kundu, Subhas (24 March 2014). Silk
Biomaterials for Tissue Engineering and Regenerative Medicine. Elsevier Science. pp. 3–. ISBN 978-0-85709-706-4.  ^ Hill, John E. (2009) Through the Jade Gate to Rome: A Study of the Silk
Routes during the Later Han Dynasty, 1st to 2nd Centuries CE. BookSurge, Charleston, South Carolina. ISBN 978-1-4392-2134-1. Appendix A: "Introduction of Silk
Cultivation to Khotan in the 1st Century CE," pp. 466–467. ^ "History of Sericulture" (PDF). Government of Andhra Pradesh
Andhra Pradesh
(India) – Department of Sericulture. Archived from the original (PDF) on 21 July 2011. Retrieved 7 November 2010.  ^ a b c Garthwaite, Gene Ralph (2005). The Persians. Oxford & Carlton: Blackwell Publishing, Ltd. p. 78. ISBN 1-55786-860-3.  ^ a b Abbott, Phill (17 February 2009). "Rethinking silk's origins : Nature News". Nature. doi:10.1038/457945a.  Missing or empty url= (help) ^ Good, I.L.; Kenoyer, J.M.; Meadow, R.H. (2009). "New evidence for early silk in the Indus civilization". Archaeometry. 50 (3): 457. doi:10.1111/j.1475-4754.2008.00454.x.  ^ Tn Sericulture
Archived 19 August 2014 at the Wayback Machine.. Tn Sericulture
(2014-06-30). ^ " Silk
city to come up near B'lore". Deccan Herald. Archived from the original on 15 July 2015. Retrieved 22 April 2015.  ^ " Tamil Nadu
Tamil Nadu
News : Tamil Nadu's first automatic silk reeling unit opened". The Hindu. 24 August 2008. Archived from the original on 19 October 2013. Retrieved 9 November 2013.  ^ About Thai silk
Thai silk
Archived 9 May 2007 at the Wayback Machine. from World of Thai Silk
(commercial) ^ Silk
– Banglapedia Archived 4 March 2016 at the Wayback Machine.. En.banglapedia.org (2015-03-10). Retrieved on 2016-08-02. ^ Odyssey
19 233–234: τὸν δὲ χιτῶν' ἐνόησα περὶ χροῒ σιγαλόεντα, οἷόν τε κρομύοιο λοπὸν κάτα ἰσχαλέοιο· = "And I [= Odysseus ^ Tacitus. Annals. ISBN 0-521-31543-3.  ^ Historia Augusta
Historia Augusta
Vita Heliogabali. p. XXVI.1.  ^ "Silk: Why It Is Haram for Men". 23 September 2003. Archived from the original on 2 March 2007. Retrieved 6 January 2007.  ^ "Office of Tourism – Italy – Calabria, Catanzaro". Archived from the original on 21 August 2015.  ^ "La Lonja de la Seda de Valencia – UNESCO World Heritage Centre". Whc.unesco.org. Archived from the original on 14 May 2011. Retrieved 10 April 2011.  ^ Diccionari Aguiló: materials lexicogràfics / aplegats per Marià Aguiló i Fuster; revisats i publicats sota la cura de Pompeu Fabra i Manuel de Montoliu, page 134, Institut d'Estudis Catalans, Barcelona 1929. ^ Delgado, José Luis (October 8, 2012) "La seda de Granada
era la mejor" Archived 26 August 2014 at the Wayback Machine., Granada
Hoy ^ Intxausti, Aurora (May 1, 2013) "La Alpujarra poseía 4.000 telares de seda antes de la expulsión de los moriscos" Archived 26 August 2014 at the Wayback Machine., El País. ^ Callandine 1993 ^ "Lullingstone Silk
Farm". www.lullingstonecastle.co.uk. Archived from the original on 10 January 2015. Retrieved 29 September 2016.  ^ Nash, Eric P. (30 July 1995). "STYLE; Dressed to Kill". The New York Times. Archived from the original on 9 November 2012. Retrieved 12 October 2011.  ^ Huzjan, Vladimir (July 2008). "Pokušaj otkrivanja nastanka i razvoja kravate kao riječi i odjevnoga predmeta" [The origin and development of the tie (kravata) as a word and as a garment]. Povijesni prilozi (in Croatian). Croatian Institute of History. 34 (34): 103–120. ISSN 0351-9767. Archived from the original on 29 June 2012. Retrieved 17 October 2011.  ^ " Silk
Production in Konavle". Archived from the original on 9 November 2017. Retrieved 22 April 2015.  ^ Weatherford, D (2009). American Women During World War II: An Encyclopedia. Routledge. p. 97. ISBN 0415994756.  ^ The Malayhandloom weavers:a study of the rise and decline of traditional. 1996. ISBN 9789813016996. Retrieved 2013-11-09.  ^ Pedigo, Larry P.; Rice, Marlin E. (2014-12-22). Entomology and Pest Management: Sixth Edition. Waveland Press. ISBN 9781478627708.  ^ Bezzina, Neville. " Silk
Production Process". senature.com. Archived from the original on 29 June 2012.  ^ Fritz, Anne and Cant, Jennifer (1986). Consumer Textiles. Oxford University Press Australia. Reprint 1987. ISBN 0-19-554647-4. ^ " Mulberry
Fibres – Handloom Textiles Handwoven Fabrics Natural Fabrics Cotton
clothes in Chennai". Brasstacksmadras.com. Archived from the original on 9 November 2013. Retrieved 9 November 2013.  ^ "Statistics". inserco.org. Archived from the original on 26 January 2016.  ^ Astudillo, Miguel F.; Thalwitz, Gunnar; Vollrath, Fritz (October 2014). "Life cycle assessment of Indian silk". Journal of Cleaner Production. 81: 158–167. doi:10.1016/j.jclepro.2014.06.007.  ^ "Handbook of Fiber
Chemistry", Menachem Lewin, Editor, 3rd ed., 2006, CRC press, ISBN 0-8247-2565-4 ^ "Handbook of Fiber
Chemistry", Menachem Lewin, Editor, 2nd ed.,1998, Marcel Dekker, pp. 438–441, ISBN 0-8247-9471-0 ^ The Times, London, article CS117993292, 12 October 1840. ^ Venere, Emil (31 January 2018). " Silk
fibers could be high-tech 'natural metamaterials'". Phys.org. Retrieved 2 February 2018.  ^ " Piezoelectricity
in Natural and Synthetic Silks" (PDF). Archived (PDF) from the original on 20 July 2011. Retrieved 28 April 2010.  ^ Ko, Frank K.; Kawabata, Sueo; Inoue, Mari; Niwa, Masako. "Engineering Properties of Spider
Silk" (PDF). Archived (PDF) from the original on 31 March 2010. Retrieved 9 July 2010.  ^ "To almost match spider silk, scientists regenerate silkworm silk". newatlas.com. Retrieved 2017-12-18.  ^ " Silk
Powder or Cartridge Bag Cloth". americanhistory.si.edu. Archived from the original on 9 November 2017. Retrieved 30 May 2017.  ^ Ricci, G; Patrizi, A; Bendandi, B; Menna, G; Varotti, E; Masi, M (2004). "Clinical effectiveness of a silk fabric in the treatment of atopic dermatitis". The British Journal of Dermatology. 150 (1): 127–31. doi:10.1111/j.1365-2133.2004.05705.x. PMID 14746626.  ^ Senti, G; Steinmann, L. S.; Fischer, B; Kurmann, R; Storni, T; Johansen, P; Schmid-Grendelmeier, P; Wuthrich, B; Kundig, T. M. (2006). "Antimicrobial silk clothing in the treatment of atopic dermatitis proves comparable to topical corticosteroid treatment". Dermatology. 213 (3): 228–33. doi:10.1159/000095041. PMID 17033173.  ^ Omenetto, Fiorenzo. "Silk, the ancient material of the future - Talk Video - TED.com". ted.com. Archived from the original on 26 February 2014.  ^ a b Rockwood, Danielle N; Preda, Rucsanda C; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L; Kaplan, David L (2011). "Materials fabrication from Bombyx mori
Bombyx mori
silk fibroin". Nature Protocols. 6 (10): 1612–1631. doi:10.1038/nprot.2011.379. PMC 3808976 . PMID 21959241.  ^ Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L (2003-02-01). "Silk-based biomaterials". Biomaterials. 24 (3): 401–416. doi:10.1016/S0142-9612(02)00353-8.  ^ Vepari, Charu; Kaplan, David L. (2007-08-01). " Silk
as a biomaterial". Progress in Polymer Science. Polymers in Biomedical Applications. 32 (8–9): 991–1007. doi:10.1016/j.progpolymsci.2007.05.013. PMC 2699289 . PMID 19543442.  ^ Zhou, Cong-Zhao; Confalonieri, Fabrice; Medina, Nadine; Zivanovic, Yvan; Esnault, Catherine; Yang, Tie; Jacquet, Michel; Janin, Joel; Duguet, Michel (2000-06-15). "Fine organization of Bombyx mori
Bombyx mori
fibroin heavy chain gene". Nucleic Acids Research. 28 (12): 2413–2419. doi:10.1093/nar/28.12.2413. PMC 102737 . PMID 10871375.  ^ Kardestuncer, T; McCarthy, M B; Karageorgiou, V; Kaplan, D; Gronowicz, G (2006). "RGD-tethered Silk
Substrate Stimulates the Differentiation of Human Tendon
Cells". Clinical Orthopaedics and Related Research. 448: 234–239. doi:10.1097/01.blo.0000205879.50834.fe.  ^ Kundu, Banani; Rajkhowa, Rangam; Kundu, Subhas C.; Wang, Xungai (2013-04-01). " Silk fibroin
Silk fibroin
biomaterials for tissue regenerations". Advanced Drug Delivery Reviews. Bionics – Biologically inspired smart materials. 65 (4): 457–470. doi:10.1016/j.addr.2012.09.043.  ^ Zhang, Yaopeng; Yang, Hongxia; Shao, Huili; Hu, Xuechao (2010-05-05). "Antheraea pernyi Silk
Fiber: A Potential Resource for Artificially Biospinning Spider
Dragline Silk". Journal of Biomedicine and Biotechnology. 2010: 1–8. doi:10.1155/2010/683962. PMC 2864894 . PMID 20454537.  ^ Wray, Lindsay S.; Hu, Xiao; Gallego, Jabier; Georgakoudi, Irene; Omenetto, Fiorenzo G.; Schmidt, Daniel; Kaplan, David L. (2011-10-01). "Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 99B (1): 89–101. doi:10.1002/jbm.b.31875. PMC 3418605 . PMID 21695778.  ^ a b Meinel, Lorenz; Hofmann, Sandra; Karageorgiou, Vassilis; Kirker-Head, Carl; McCool, John; Gronowicz, Gloria; Zichner, Ludwig; Langer, Robert; Vunjak-Novakovic, Gordana (2005-01-01). "The inflammatory responses to silk films in vitro and in vivo". Biomaterials. 26 (2): 147–155. doi:10.1016/j.biomaterials.2004.02.047.  ^ Fan, Hongbin; Liu, Haifeng; Toh, Siew L.; Goh, James C.H. (2009). "Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model". Biomaterials. 30 (28): 4967–4977. doi:10.1016/j.biomaterials.2009.05.048.  ^ Minoura, N.; Aiba, S.; Higuchi, M.; Gotoh, Y.; Tsukada, M.; Imai, Y. (1995-03-17). "Attachment and growth of fibroblast cells on silk fibroin". Biochemical and Biophysical Research Communications. 208 (2): 511–516. doi:10.1006/bbrc.1995.1368. PMID 7695601.  ^ Gellynck, Kris; Verdonk, Peter C. M.; Van Nimmen, Els; Almqvist, Karl F.; Gheysens, Tom; Schoukens, Gustaaf; Van Langenhove, Lieva; Kiekens, Paul; Mertens, Johan (2008-11-01). " Silkworm
and spider silk scaffolds for chondrocyte support". Journal of Materials Science. Materials in Medicine. 19 (11): 3399–3409. doi:10.1007/s10856-008-3474-6. PMID 18545943.  ^ Lundmark, Katarzyna; Westermark, Gunilla T.; Olsén, Arne; Westermark, Per (2005-04-26). " Protein
fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism". Proceedings of the National Academy of Sciences of the United States of America. 102 (17): 6098–6102. Bibcode:2005PNAS..102.6098L. doi:10.1073/pnas.0501814102. PMC 1087940 . PMID 15829582.  ^ Wang, Yongzhong; Rudym, Darya D.; Walsh, Ashley; Abrahamsen, Lauren; Kim, Hyeon-Joo; Kim, Hyun S.; Kirker-Head, Carl; Kaplan, David L. (2008). "In vivo degradation of three-dimensional silk fibroin scaffolds". Biomaterials. 29 (24–25): 3415–3428. doi:10.1016/j.biomaterials.2008.05.002. PMC 3206261 . PMID 18502501.  ^ Gleason, Carrie (2006) The Biography of Silk. Crabtree Publishing Company. p. 12. ISBN 0778724875. ^ Stancati, Margherita (4 January 2011). "Taking the Violence Out of Silk". Wall Street Journal. Archived from the original on 22 January 2015. Retrieved 22 January 2015.  ^ Alexander, Horace Gundry; Centenary, National Committee for the Gandhi (1968). Mahatma Gandhi: 100 years. Gandhi Peace Foundation; [sole distributors: Orient Longmans].  ^ Geer, Abigail (21 June 2013). "The Dark and Disturbing World of Silk". Care2. Archived from the original on 22 January 2014. Retrieved 23 January 2014. [silkworms] have the capacity to feel and the right to live free from pain and suffering.  ^ "Down and Silk: Birds and Insects
Exploited for Feathers and Fabric". PETA. Archived from the original on 1 February 2014. Retrieved 23 January 2014. Silk
Production Causes Painful Death for Insects 

Cited sources

Hill, John E. 2004. The Peoples of the West from the Weilüe 魏略 by Yu Huan 魚豢: A Third Century Chinese Account Composed between 239 and 265 AD. Draft annotated English translation. Appendix E. Magie, David. 1924. Historia Augusta
Historia Augusta
Life of Heliogabalus. Loeb Classical Texts No. 140: Harvard University Press.ISBN 978-0674991552.

Further reading

Callandine, Anthony (1993). "Lombe's Mill: An Exercise in reconstruction". Industrial Archaeology Review. Maney Publishing. XVI (1). ISSN 0309-0728.  Feltwell, John. 1990. The Story of Silk. Alan Sutton Publishing ISBN 0-86299-611-2 Good, Irene. 1995. "On the question of silk in pre-Han Eurasia" Antiquity Vol. 69, Number 266, December 1995, pp. 959–968 Kuhn, Dieter. 1995. " Silk
in Ancient China: From Geometric Figures to Patterns of Pictorial Likeness." Chinese Science 12 (1995): pp. 77–114. Liu, Xinru (1996). Silk
and Religion: An Exploration of Material Life and the Thought of People, AD 600–1200. Oxford University Press. Liu, Xinru (2010). The Silk Road
Silk Road
in World History. Oxford University Press. ISBN 978-0-19-516174-8; ISBN 978-0-19-533810-2 (pbk). Rayner, Hollins (1903). Silk
throwing and waste silk spinning. Scott, Greenwood, Van Nostrand.  Sung, Ying-Hsing. 1637. Chinese Technology in the Seventeenth Century – T'ien-kung K'ai-wu. Translated and annotated by E-tu Zen Sun and Shiou-chuan Sun. Pennsylvania State University Press, 1966. Reprint: Dover, 1997. Chap. 2. Clothing materials. Kadolph, Sara J. Textiles. 10th ed. Upper Saddle River: Pearson Prentice Hall, 2007. 76–81. Ricci, G, et al. "Clinical Effectiveness of a Silk
Fabric in the Treatment of Atopic Dermatitis", British Journal of Dermatology (2004) Issue 150. Pages 127 – 131

External links

Look up silk in Wiktionary, the free dictionary.

Wikimedia Commons has media related to Silk.

References to silk by Roman and Byzantine writers A series of maps depicting the global trade in silk History of traditional silk in martial arts uniforms Raising silkworms in classrooms for educational purposes (with photos) New thread in fabric of insect silksphysorg.com

v t e



History of silk Magnanery Sericulture Silk
Road Silk


silk Assam
silk Atlas silk Byzantine silk Eri silk Japanese silk Lao silk Mysore
silk Rajshahi
silk Thai silk Tussar silk Wild silk


in the Indian subcontinent Silk
industry in China Silk
industry of Cheshire


Saree Tenun Pahang Diraja

v t e




Abacá Bagasse Bamboo Coir Cotton Fique Flax


Hemp Jute Kapok Kenaf Piña Pine Raffia Ramie Rattan Sisal Wood


Alpaca Angora Byssus Camel hair Cashmere Catgut Chiengora Guanaco Hair Llama Mohair Pashmina Qiviut Rabbit Silk Tendon Spider
silk Wool Vicuña Yak





Art silk


Acetate Diacetate Lyocell Modal Rayon Triacetate



Glass Carbon


Basalt Metallic


Acrylic Aramid

Twaron Kevlar Technora Nomex

Microfiber Modacrylic Nylon Olefin Polyester Polyethylene

Dyneema Spectra

Spandex Vinylon Vinyon Zylon

Category Commons

v t e



Aertex Airdura Airguard Barathea Barkcloth Batiste Bedford cord Bengaline Beta cloth Bombazine Brilliantine Broadcloth Buckram Bunting Burlap C change Calico Cambric Canvas Chambray Capilene Cedar bark Challis Char cloth Charmeuse Charvet Cheesecloth Chiffon Chino Chintz Cloqué Cloth of gold Cordura Corduroy Duck Coutil Crape Crêpe Cretonne Dazzle Denim Dimity Donegal tweed Dornix Dowlas Drill Drugget Eolienne Flannel Foulard Fustian Gabardine Gauze Gazar Georgette Ghalamkar Gingham Grenadine Grenfell Cloth Grosgrain Habutai Haircloth Harris Tweed Herringbone Himroo Hodden Irish linen Jamdani Kerseymere Khādī Khaki drill Kente cloth Lamé Lawn Linsey-woolsey Loden Longcloth Mackinaw Madapolam Madras Moleskin Muslin Nainsook Nankeen Ninon Oilskin Organdy Organza Osnaburg Ottoman Oxford Paduasoy Percale Pongee Poplin Rakematiz Rayadillo Rep Rinzu Ripstop Russell cord Saga Nishiki Samite Sateen Satin Saye Scarlet Seersucker Sendal Serge Scrim Shot silk Stuff Taffeta Tais Toile Tucuyo Tweed Twill Ultrasuede Vegetable flannel Ventile Vinyl coated polyester Viyella Voile Wadmal Wigan Whipcord Zephyr Zorbeez

Figured woven

Brocade Camlet Damask Lampas Songket

Pile woven

Baize Chenille Corduroy Crimplene Fustian Mockado Moquette Plush Polar fleece Terrycloth Velours du Kasaï Velvet Velveteen Zibeline


Felt Cedar bark


Boiled wool Coolmax Machine knitting Milliskin Jersey Velour


Bobbinet Carbon fiber Lace Mesh Needlerun net Ninon Tulle


Ballistic nylon Ban-Lon Conductive Darlexx E-textiles Gannex Gore-Tex Silnylon Spandex Stub-tex SympaTex Windstopper


Argyle Bizarre silk Chiné Herringbone Houndstooth Paisley Pin stripes Polka dot Shweshwe Tartan
(plaid) Tattersall


Acrylic Alpaca Angora Cashmere Coir Cotton Eisengarn Hemp Jute Kevlar Linen Mohair Nylon Microfiber Olefin Pashmina Polyester Piña Ramie Rayon Sea silk Silk Sisal Spandex Spider
silk Wool

Finishing and printing

Androsia Batik Beetling Bingata Bògòlanfini Burnout Calendering Decatising Devoré Finishing Fulling Heatsetting Mercerization Moire Nap Rogan printing Rōketsuzome Roller printing Sanforization Tenterhook Textile
printing Warp printing Waxed cotton Woodblock printing Indienne

Fabric mills

Carlo Barbera Cerruti Dormeuil Drago Ermenegildo Zegna E. Thomas Holland & Sherry Larusmiani Loro Piana Reda Scabal Vitale Barberis Canonico


Dyeing Fiber History of textiles History of silk Knitting Pandy Shrinkage Swatches and strike-offs Synthetic fabric Terminology Manufacturing Preservation Weaving Yarn

v t e

Clothing materials and parts

Garment Structures

Armscye Collar Cuff Dart Facing Fly Lapel Gore Hem Lining Placket Pleat Pocket Revers Ruffle Shoulder pad Strap Sleeve Train Waistband Yoke


Artificial leather Cotton Elastic Fur Linen Nylon Polyester Rayon Silk Spandex Wool

Animals hide / Leather

Calf Deer Goat Kangaroo Ostrich Seal Sheep Snake Stingray


Back closure Belt hook Buckle Button

Buttonhole Frog Shank

Hook-and-eye Hook and loop


Snap Zipper


Neckline Bustline