Signaling molecule
   HOME

TheInfoList



OR:

In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, cell signaling (cell signalling in
British English British English (BrE, en-GB, or BE) is, according to Lexico, Oxford Dictionaries, "English language, English as used in Great Britain, as distinct from that used elsewhere". More narrowly, it can refer specifically to the English language in ...
) or cell communication is the ability of a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Conne ...
s and eukaryotes. Signals that originate from outside a cell (or extracellular signals) can be physical agents like mechanical
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, voltage,
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, light, or chemical signals (e.g., small molecules,
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s, or gas). Cell signaling can occur over short or long distances, and as a result can be classified as
autocrine Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with p ...
,
juxtacrine In biology, juxtacrine signalling (or contact-dependent signalling) is a type of cell–cell or cell–extracellular matrix signalling in multicellular organisms that requires close contact. In this type of signalling, a ligand on one surface bi ...
,
intracrine Intracrine refers to a hormone that acts inside a cell, regulating intracellular events. In simple terms it means that the cell stimulates itself by cellular production of a factor that acts within the cell. Steroid hormones act through intracellu ...
,
paracrine Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over ...
, or endocrine. Signaling molecules can be synthesized from various biosynthetic pathways and released through passive or
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
s, or even from
cell damage Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutrition ...
.
Receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
s play a key role in cell signaling as they are able to detect chemical signals or physical stimuli. Receptors are generally proteins located on the cell surface or within the interior of the cell such as the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, organelles, and nucleus.
Cell surface receptor Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral m ...
s usually bind with extracellular signals (or ligands), which causes a conformational change in the receptor that leads it to initiate enzymic activity, or to open or close ion channel activity. Some receptors do not contain enzymatic or channel-like domains but are instead linked to enzymes or transporters. Other receptors like nuclear receptors have a different mechanism such as changing their DNA binding properties and cellular localization to the nucleus. Signal transduction begins with the transformation (or transduction) of a signal into a chemical one, which can directly activate an ion channel (
ligand-gated ion channel Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
) or initiate a
second messenger system Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
cascade that propagates the signal through the cell. Second messenger systems can amplify a signal, in which activation of a few receptors results in multiple secondary messengers being activated, thereby amplifying the initial signal (the first messenger). The downstream effects of these signaling pathways may include additional enzymatic activities such as
proteolytic cleavage Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, ...
, phosphorylation, methylation, and
ubiquitinylation Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
. Each cell is programmed to respond to specific extracellular signal molecules, and is the basis of
development Development or developing may refer to: Arts *Development hell, when a project is stuck in development *Filmmaking, development phase, including finance and budgeting *Development (music), the process thematic material is reshaped * Photograph ...
,
tissue repair Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biologi ...
, immunity, and
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. Errors in signaling interactions may cause diseases such as
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
,
autoimmunity In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". ...
, and
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ...
.


Taxonomic range

In many small organisms such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
,
quorum sensing In biology, quorum sensing or quorum signalling (QS) is the ability to detect and respond to cell population density by gene regulation. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at ...
enables individuals to begin an activity only when the population is sufficiently large. This signaling between cells was first observed in the marine bacterium ''
Aliivibrio fischeri ''Aliivibrio fischeri'' (also called ''Vibrio fischeri'') is a Gram-negative, rod-shaped bacterium found globally in marine environments. This species has bioluminescent properties, and is found predominantly in symbiosis with various marine anim ...
'', which produces light when the population is dense enough. The mechanism involves the production and detection of a signaling molecule, and the regulation of gene transcription in response. Quorum sensing operates in both gram-positive and gram-negative bacteria, and both within and between species. In
slime mould Slime mold or slime mould is an informal name given to several kinds of unrelated eukaryotic organisms with a life cycle that includes a free-living single-celled stage and the formation of spores. Spores are often produced in macroscopic mu ...
s, individual cells aggregate together to form fruiting bodies and eventually spores, under the influence of a chemical signal, known as an
acrasin Each species of slime mold has its own specific chemical messenger, which are collectively referred to as acrasins. These chemicals signal that many individual cells aggregate to form a single large cell or plasmodium. One of the earliest acrasins t ...
. The individuals move by chemotaxis, i.e. they are attracted by the chemical gradient. Some species use
cyclic AMP Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal tra ...
as the signal; others such as ''
Polysphondylium violaceum ''Polysphondylium'' is a genus of cellular slime mold, including the species ''Polysphondylium pallidum''. The genus was circumscribed by German mycologist Julius Oscar Brefeld in 1884. Species *''Polysphondylium acuminatum'' Vadell & Cavender 1 ...
'' use a
dipeptide A dipeptide is an organic compound derived from two amino acids. The constituent amino acids can be the same or different. When different, two isomers of the dipeptide are possible, depending on the sequence. Several dipeptides are physiologicall ...
known as glorin. In plants and animals, signaling between cells occurs either through release into the
extracellular space Extracellular space refers to the part of a multicellular organism outside the cells, usually taken to be outside the plasma membranes, and occupied by fluid. This is distinguished from intracellular space, which is inside the cells. The compos ...
, divided in
paracrine signaling Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over ...
(over short distances) and endocrine signaling (over long distances), or by direct contact, known as
juxtacrine signaling In biology, juxtacrine signalling (or contact-dependent signalling) is a type of cell–cell or cell–extracellular matrix signalling in multicellular organisms that requires close contact. In this type of signalling, a ligand on one surface bin ...
such as
notch signaling The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transme ...
.
Autocrine signaling Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with pa ...
is a special case of paracrine signaling where the secreting cell has the ability to respond to the secreted signaling molecule. Synaptic signaling is a special case of paracrine signaling (for
chemical synapse Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
s) or juxtacrine signaling (for
electrical synapse Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
s) between
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s and target cells.


Extracellular signal


Synthesis and release

Many cell signals are carried by molecules that are released by one cell and move to make contact with another cell. Signaling molecules can belong to several chemical classes:
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids includ ...
s, phospholipids,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s,
monoamine Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin. All monoamines ar ...
s,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, glycoproteins, or
gases Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
. Signaling molecules binding surface receptors are generally large and
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are ...
(e.g. TRH,
Vasopressin Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then trave ...
, Acetylcholine), while those entering the cell are generally small and
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
(e.g.
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every verteb ...
s, thyroid hormones,
cholecalciferol Cholecalciferol, also known as vitamin D3 and colecalciferol, is a type of vitamin D that is made by the skin when exposed to sunlight; it is found in some foods and can be taken as a dietary supplement. Cholecalciferol is made in the skin fo ...
,
retinoic acid Retinoic acid (used simplified here for all-''trans''-retinoic acid) is a metabolite of vitamin A1 (all-''trans''-retinol) that mediates the functions of vitamin A1 required for growth and development. All-''trans''-retinoic acid is required in ...
), but important exceptions to both are numerous, and the same molecule can act both via surface receptors or in an intracrine manner to different effects. In animal cells, specialized cells release these hormones and send them through the circulatory system to other parts of the body. They then reach target cells, which can recognize and respond to the hormones and produce a result. This is also known as endocrine signaling. Plant growth regulators, or plant hormones, move through cells or by diffusing through the air as a gas to reach their targets. Hydrogen sulfide is produced in small amounts by some cells of the human body and has a number of biological signaling functions. Only two other such gases are currently known to act as signaling molecules in the human body: nitric oxide and
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
.


Exocytosis

Exocytosis is the process by which a cell transports
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
s such as neurotransmitters and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s out of the cell. As an
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, the process that brings substances into the cell, are used by all cells because most
chemical substance A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., w ...
s important to them are large polar molecules that cannot pass through the
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
portion of the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
by
passive transport Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to dri ...
. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structures at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell. In exocytosis, membrane-bound secretory
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
are carried to the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
, where they dock and fuse at porosomes and their contents (i.e., water-soluble molecules) are secreted into the extracellular environment. This secretion is possible because the vesicle transiently
fuses Fuse or FUSE may refer to: Devices * Fuse (electrical), a device used in electrical systems to protect against excessive current ** Fuse (automotive), a class of fuses for vehicles * Fuse (hydraulic), a device used in hydraulic systems to protec ...
with the plasma membrane. In the context of
neurotransmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
, neurotransmitters are typically released from
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulse ...
s into the
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
via exocytosis; however, neurotransmitters can also be released via
reverse transport Reverse transport, or transporter reversal, is a phenomenon in which the substrates of a membrane transport protein are moved in the opposite direction to that of their typical movement by the transporter. Transporter reversal typically occurs when ...
through
membrane transport protein A membrane transport protein (or simply transporter) is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembra ...
s.


Forms


Autocrine

Autocrine signaling involves a cell secreting a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell itself. This can be contrasted with
paracrine signaling Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over ...
,
intracrine Intracrine refers to a hormone that acts inside a cell, regulating intracellular events. In simple terms it means that the cell stimulates itself by cellular production of a factor that acts within the cell. Steroid hormones act through intracellu ...
signaling, or classical endocrine signaling.


Paracrine

In paracrine signaling, a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance (local action), as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
; juxtacrine interactions; and
autocrine signaling Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with pa ...
. Cells that produce paracrine factors secrete them into the immediate
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.
Paracrine Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over ...
signals such as
retinoic acid Retinoic acid (used simplified here for all-''trans''-retinoic acid) is a metabolite of vitamin A1 (all-''trans''-retinol) that mediates the functions of vitamin A1 required for growth and development. All-''trans''-retinoic acid is required in ...
target only cells in the vicinity of the emitting cell. Neurotransmitters represent another example of a paracrine signal. Some signaling molecules can function as both a hormone and a neurotransmitter. For example, epinephrine and
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad' ...
can function as hormones when released from the
adrenal gland The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex whic ...
and are transported to the heart by way of the blood stream. Norepinephrine can also be produced by
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s to function as a neurotransmitter within the brain.
Estrogen Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal ac ...
can be released by the ovary and function as a hormone or act locally via paracrine or
autocrine Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with p ...
signaling. Although paracrine signaling elicits a diverse array of responses in the induced cells, most paracrine factors utilize a relatively streamlined set of
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
s and pathways. In fact, different organs in the body - even between different species - are known to utilize a similar sets of paracrine factors in differential development. The highly conserved receptors and pathways can be organized into four major families based on similar structures:
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their ...
(FGF) family,
Hedgehog A hedgehog is a spiny mammal of the subfamily Erinaceinae, in the eulipotyphlan family Erinaceidae. There are seventeen species of hedgehog in five genera found throughout parts of Europe, Asia, and Africa, and in New Zealand by introductio ...
family, Wnt family, and TGF-β superfamily. Binding of a paracrine factor to its respective receptor initiates signal transduction cascades, eliciting different responses.


Endocrine

'' Endocrine'' signals are called
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
s. Hormones are produced by endocrine cells and they travel through the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the cir ...
to reach all parts of the body. Specificity of signaling can be controlled if only some cells can respond to a particular hormone. Endocrine signaling involves the release of
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
s by internal glands of an
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
directly into the
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
, regulating distant target organs. In
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () (chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with c ...
s, the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamu ...
is the neural control center for all endocrine systems. In
humans Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, ...
, the major
endocrine gland Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testes, ...
s are the thyroid gland and the
adrenal gland The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex whic ...
s. The study of the endocrine system and its disorders is known as
endocrinology Endocrinology (from '' endocrine'' + '' -ology'') is a branch of biology and medicine dealing with the endocrine system, its diseases, and its specific secretions known as hormones. It is also concerned with the integration of developmental event ...
.


Juxtacrine

Juxtacrine signaling is a type of
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
–cell or cell–
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
signaling in
multicellular A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially un ...
organisms that requires close contact. There are three types: # A membrane
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
(
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
,
oligosaccharide An oligosaccharide (/ˌɑlɪgoʊˈsækəˌɹaɪd/; from the Greek ὀλίγος ''olígos'', "a few", and σάκχαρ ''sácchar'', "sugar") is a saccharide polymer containing a small number (typically two to ten) of monosaccharides (simple sug ...
,
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids includ ...
) and a
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
of two adjacent cells
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizati ...
. # A communicating
junction Junction may refer to: Arts and entertainment * ''Junction'' (film), a 2012 American film * Jjunction, a 2002 Indian film * Junction (album), a 1976 album by Andrew Cyrille * Junction (EP), by Basement Jaxx, 2002 * Junction (manga), or ''Hot ...
links the intracellular compartments of two adjacent cells, allowing transit of relatively small molecules. # An
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
glycoprotein and a membrane protein interact. Additionally, in
unicellular A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and ...
organisms such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, juxtacrine signaling means interactions by membrane contact. Juxtacrine signaling has been observed for some
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regul ...
s,
cytokine Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
and
chemokine Chemokines (), or chemotactic cytokines, are a family of small cytokines or signaling proteins secreted by cells that induce directional movement of leukocytes, as well as other cell types, including endothelial and epithelial cells. In additio ...
cellular signals, playing an important role in the
immune response An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which could ...
. Juxtacrine signalling via direct mambrane contacts is also present between neuronal cell bodies and motile processes of microglia both during development, and in the adult brain.


Receptors

Cells receive information from their neighbors through a class of proteins known as
receptors Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
. Receptors may bind with some molecules (ligands) or may interact with physical agents like light, mechanical temperature, pressure, etc. Reception occurs when the target cell (any cell with a receptor protein specific to the
signal molecule In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
) detects a signal, usually in the form of a small, water-soluble molecule, via binding to a receptor protein on the cell surface, or once inside the cell, the signaling molecule can bind to
intracellular receptor Intracellular receptors are Globular protein receptors located inside the cell rather than on its cell membrane. The word ''intracellular'' means "within or inside a cell". Molecules that cross a cell membrane to bind with a receptor are generall ...
s, other elements, or stimulate
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
activity (e.g. gasses), as in intracrine signaling. Signaling molecules interact with a target cell as a
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
to
cell surface receptor Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral m ...
s, and/or by entering into the cell through its
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
or endocytosis for
intracrine Intracrine refers to a hormone that acts inside a cell, regulating intracellular events. In simple terms it means that the cell stimulates itself by cellular production of a factor that acts within the cell. Steroid hormones act through intracellu ...
signaling. This generally results in the activation of second messengers, leading to various physiological effects. In many mammals, early embryo cells exchange signals with cells of the
uterus The uterus (from Latin ''uterus'', plural ''uteri'') or womb () is the organ in the reproductive system of most female mammals, including humans that accommodates the embryonic and fetal development of one or more embryos until birth. The ...
. In the human gastrointestinal tract,
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
exchange signals with each other and with human
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercell ...
and
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splint ...
cells. For the yeast ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have b ...
'' during
mating In biology, mating is the pairing of either opposite- sex or hermaphroditic organisms for the purposes of sexual reproduction. ''Fertilization'' is the fusion of two gametes. ''Copulation'' is the union of the sex organs of two sexually reprod ...
, some cells send a
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
signal (mating factor
pheromone A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavio ...
s) into their environment. The mating factor peptide may bind to a cell surface
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
on other yeast cells and induce them to prepare for mating.


Cell surface receptors

Cell surface receptors play an essential role in the biological systems of single- and multi-cellular organisms and malfunction or damage to these proteins is associated with cancer, heart disease, and asthma. * These trans-membrane receptors are able to transmit information from outside the cell to the inside because they change conformation when a specific ligand binds to it. There are three major types: Ion channel linked receptors,
G protein–coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
s, and
enzyme-linked receptor An enzyme-linked receptor, also known as a catalytic receptor, is a transmembrane receptor, where the binding of an extracellular ligand causes enzymatic activity on the intracellular side. Hence a catalytic receptor is an integral membrane protei ...
s.


Ion channel linked receptors

Ion channel linked receptors are a group of
transmembrane A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequent ...
ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl to pass through the membrane in response to the binding of a chemical messenger (i.e. a
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
), such as a neurotransmitter. When a
presynaptic neuron Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous sys ...
is excited, it releases a neurotransmitter from vesicles into the
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
. The neurotransmitter then binds to receptors located on the
postsynaptic neuron Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
. If these receptors are ligand-gated ion channels, a resulting conformational change opens the ion channels, which leads to a flow of ions across the cell membrane. This, in turn, results in either a
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is ess ...
, for an excitatory receptor response, or a hyperpolarization (biology), hyperpolarization, for an inhibitory response. These receptor proteins are typically composed of at least two different domains: a transmembrane domain which includes the ion pore, and an extracellular domain which includes the ligand binding location (an allosteric regulation, allosteric binding site). This modularity has enabled a 'divide and conquer' approach to finding the structure of the proteins (crystallising each domain separately). The function of such receptors located at synapses is to convert the chemical signal of presynaptically released neurotransmitter directly and very quickly into a postsynaptic electrical signal. Many LICs are additionally modulated by allosteric Ligand (biochemistry), ligands, by channel blockers, ions, or the membrane potential. LICs are classified into three superfamilies which lack evolutionary relationship: cys-loop receptors, Glutamate-gated ion channel family, ionotropic glutamate receptors and P2X purinoreceptor, ATP-gated channels.


G protein–coupled receptors

G protein-coupled receptors are a large group of protein family, evolutionarily-related proteins that are
cell surface receptor Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral m ...
s that detect
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
s outside the cell (biology), cell and activate cellular responses. Coupling with G proteins, they are called seven-transmembrane receptors because they pass through the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
seven times. Text was copied from this source, which is available under
Attribution 2.5 Generic (CC BY 2.5)
license.
Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. G protein-coupled receptors are found only in eukaryotes, including yeast, choanoflagellates, and animals. The ligand (biochemistry), ligands that bind and activate these receptors include light-sensitive compounds, odors,
pheromone A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavio ...
s,
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
s, and neurotransmitters, and vary in size from small molecules to
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s to large
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s. G protein-coupled receptors are involved in many diseases. There are two principal signal transduction pathways involving the G protein-coupled receptors: cyclic adenosine monophosphate, cAMP signal pathway and phosphatidylinositol signal pathway. When a ligand binds to the GPCR it causes a conformational change in the GPCR, which allows it to act as a guanine nucleotide exchange factor (GEF). The GPCR can then activate an associated G protein by exchanging the guanosine diphosphate, GDP bound to the G protein for a guanosine triphosphate, GTP. The G protein's α subunit, together with the bound GTP, can then dissociate from the β and γ subunits to further affect intracellular signaling proteins or target functional proteins directly depending on the α subunit type (Gs alpha subunit, Gαs, Gi alpha subunit, Gαi/o, Gq alpha subunit, Gαq/11, G12/G13 alpha subunits, Gα12/13). G protein-coupled receptors are an important drug target and approximately 34% of all Food and Drug Administration (FDA) approved drugs target 108 members of this family. The global sales volume for these drugs is estimated to be 180 billion US dollars . It is estimated that GPCRs are targets for about 50% of drugs currently on the market, mainly due to their involvement in signaling pathways related to many diseases i.e. mental, metabolic including endocrinological disorders, immunological including viral infections, cardiovascular, inflammatory, senses disorders, and cancer. The long ago discovered association between GPCRs and many endogenous and exogenous substances, resulting in e.g. analgesia, is another dynamically developing field of pharmaceutical research.


Enzyme-linked receptors

Enzyme-linked receptors (or catalytic receptors) are transmembrane receptors that, upon activation by an extracellular Ligand (biochemistry), ligand, causes enzymatic activity on the intracellular side. Hence a catalytic receptor is an integral membrane protein possessing both Enzyme, enzymatic, catalysis, catalytic, and
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
functions. They have two important domains, an extra-cellular ligand binding domain and an intracellular domain, which has a catalytic function; and a single transmembrane helix. The signaling molecule binds to the receptor on the outside of the cell and causes a conformational change on the catalytic function located on the receptor inside the cell. Examples of the enzymatic activity include: * Receptor tyrosine kinase, as in fibroblast growth factor receptor. Most enzyme-linked receptors are of this type. * Serine/threonine-specific protein kinase, as in bone morphogenetic protein * Guanylate cyclase, as in atrial natriuretic factor receptor


Intracellular receptors


Steroid hormone receptor

Steroid hormone receptors are found in the cell nucleus, nucleus, cytosol, and also on the plasma membrane of target cells. They are generally
intracellular receptor Intracellular receptors are Globular protein receptors located inside the cell rather than on its cell membrane. The word ''intracellular'' means "within or inside a cell". Molecules that cross a cell membrane to bind with a receptor are generall ...
s (typically cytoplasmic or nuclear) and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptor (biochemistry), receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen (group NR3A) and 3-ketosteroids (group NR3C). In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as
cell surface receptor Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral m ...
s for certain steroid hormones.


Signal transduction pathways

When binding to the signaling molecule, the receptor protein changes in some way and starts the process of transduction, which can occur in a single step or as a series of changes in a sequence of different molecules (called a signal transduction pathway). The molecules that compose these pathways are known as relay molecules. The multistep process of the transduction stage is often composed of the activation of proteins by addition or removal of phosphate groups or even the release of other small molecules or ions that can act as messengers. The amplifying of a signal is one of the benefits to this multiple step sequence. Other benefits include more opportunities for regulation than simpler systems do and the fine-tuning of the response, in both unicellular and multicellular organism. In some cases, receptor activation caused by ligand binding to a receptor is directly coupled to the cell's response to the ligand. For example, the neurotransmitter gamma-Aminobutyric acid, GABA can activate a cell surface receptor that is part of an ion channel. GABA binding to a GABAA receptor, GABAA receptor on a neuron opens a chloride-selective ion channel that is part of the receptor. GABAA receptor activation allows negatively charged chloride ions to move into the neuron, which inhibits the ability of the neuron to produce action potentials. However, for many cell surface receptors, ligand-receptor interactions are not directly linked to the cell's response. The activated receptor must first interact with other proteins inside the cell before the ultimate Physiology, physiological effect of the ligand on the cell's behavior is produced. Often, the behavior of a chain of several interacting cell proteins is altered following receptor activation. The entire set of cell changes induced by receptor activation is called a signal transduction mechanism or pathway. A more complex signal transduction pathway is the MAPK/ERK pathway, which involves changes of protein–protein interactions inside the cell, induced by an external signal. Many growth factors bind to receptors at the cell surface and stimulate cells to progress through the cell cycle and Cell division, divide. Several of these receptors are kinases that start to phosphorylate themselves and other proteins when binding to a ligand. This phosphorylation can generate a binding site for a different protein and thus induce protein–protein interaction. In this case, the ligand (called epidermal growth factor, or EGF) binds to the receptor (called Epidermal growth factor receptor, EGFR). This activates the receptor to phosphorylate itself. The phosphorylated receptor binds to an Signal transducing adaptor protein, adaptor protein (GRB2), which couples the signal to further downstream signaling processes. For example, one of the signal transduction pathways that are activated is called the mitogen-activated protein kinase (MAPK) pathway. The signal transduction component labeled as "MAPK" in the pathway was originally called "ERK," so the pathway is called the MAPK/ERK pathway. The MAPK protein is an enzyme, a protein kinase that can attach phosphate to target proteins such as the transcription factor C-myc, MYC and, thus, alter gene transcription and, ultimately, cell cycle progression. Many cellular proteins are activated downstream of the growth factor receptors (such as EGFR) that initiate this signal transduction pathway. Some signaling transduction pathways respond differently, depending on the amount of signaling received by the cell. For instance, the hedgehog (cell signaling), hedgehog protein activates different genes, depending on the amount of hedgehog protein present. Complex multi-component signal transduction pathways provide opportunities for feedback, signal amplification, and interactions inside one cell between multiple signals and signaling pathways. A specific cellular response is the result of the transduced signal in the final stage of cell signaling. This response can essentially be any cellular activity that is present in a body. It can spur the rearrangement of the cytoskeleton, or even as catalysis by an enzyme. These three steps of cell signaling all ensure that the right cells are behaving as told, at the right time, and in synchronization with other cells and their own functions within the organism. At the end, the end of a signal pathway leads to the regulation of a cellular activity. This response can take place in the nucleus or in the cytoplasm of the cell. A majority of signaling pathways control protein synthesis by turning certain genes on and off in the nucleus. In unicellular organisms such as bacteria, signaling can be used to 'activate' peers from a Dormancy, dormant state, enhance virulence, defend against bacteriophages, etc. In
quorum sensing In biology, quorum sensing or quorum signalling (QS) is the ability to detect and respond to cell population density by gene regulation. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at ...
, which is also found in social insects, the multiplicity of individual signals has the potentiality to create a positive feedback loop, generating coordinated response. In this context, the signaling molecules are called autoinducers. This signaling mechanism may have been involved in evolution from unicellular to multicellular organisms. Bacteria also use contact-dependent signaling, notably to limit their growth. Signaling molecules used by multicellular organisms are often called
pheromone A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavio ...
s. They can have such purposes as alerting against danger, indicating food supply, or assisting in reproduction.


Short-term cellular responses

.


Regulating gene activity

.


Notch signaling pathway

Notch signaling pathway, Notch is a cell surface protein that functions as a receptor. Animals have a small set of genes that code for signaling proteins that interact specifically with Notch receptors and stimulate a response in cells that express Notch on their surface. Molecules that activate (or, in some cases, inhibit) receptors can be classified as hormones, neurotransmitters, cytokines, and growth factors, in general called Ligand (biochemistry), receptor ligands. Ligand receptor interactions such as that of the Notch receptor interaction, are known to be the main interactions responsible for cell signaling mechanisms and communication. Notch signaling pathway, notch acts as a receptor for ligands that are expressed on adjacent cells. While some receptors are cell-surface proteins, others are found inside cells. For example, estrogen is a
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
molecule that can pass through the lipid bilayer of the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
s. As part of the endocrine system, intracellular estrogen receptors from a variety of cell types can be activated by estrogen produced in the ovary, ovaries. In the case of Notch-mediated signaling, the signal transduction mechanism can be relatively simple. As shown in Figure 2, the activation of Notch can cause the Notch protein to be altered by a protease. Part of the Notch protein is released from the cell surface membrane and takes part in gene regulation. Cell signaling research involves studying the spatial and temporal dynamics of both receptors and the components of signaling pathways that are activated by receptors in various cell types. Emerging methods for single-cell mass-spectrometry analysis promise to enable studying signal transduction with single-cell resolution. In
notch signaling The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transme ...
, direct contact between cells allows for precise control of cell differentiation (cellular), differentiation during embryonic development. In the worm ''Caenorhabditis elegans'', two cells of the developing gonad each have an equal chance of terminally differentiating or becoming a uterine precursor cell that continues to divide. The choice of which cell continues to divide is controlled by competition of cell surface signals. One cell will happen to produce more of a cell surface protein that activates the Notch #Receptors for cell signals, receptor on the adjacent cell. This activates a feedback loop or system that reduces Notch expression in the cell that will differentiate and that increases Notch on the surface of the cell that continues as a stem cell.


See also

*Scaffold protein *Biosemiotics *Molecular cellular cognition *Crosstalk (biology) *Bacterial outer membrane vesicles *Membrane vesicle trafficking *Host-pathogen interface *Retinoic acid *JAK-STAT signaling pathway *Imd pathway *Signal peptide, Localisation signal *Oscillation (cell signaling), Oscillation *Protein dynamics *Systems biology *Lipid signaling *Redox signaling *Signaling cascade *Cell Signaling Technology, an antibody development and production company *Netpath – A curated resource of signal transduction pathways in humans *Synthetic Biology Open Language *Nanoscale networking – leveraging biological signaling to construct ad hoc in vivo communication networks *Soliton model in neuroscience—Physical communication via sound waves in membranes *Temporal feedback


References


Further reading

* "The Inside Story of Cell Communication". ''learn.genetics.utah.edu''. Retrieved 2018-10-20. *"When Cell Communication Goes Wrong". ''learn.genetics.utah.edu''. Retrieved 2018-10-24.


External links


NCI-Nature Pathway Interaction Database
authoritative information about signaling pathways in human cells. * *
Signaling Pathways Project
cell signaling hypothesis generation knowledgebase constructed using biocurated archived transcriptomic and ChIP-Seq datasets {{Portal bar, Biology Cell signaling, Cell biology Cell communication Systems biology Human female endocrine system