Shear thickening
   HOME

TheInfoList



OR:

A dilatant (, ) (also termed shear thickening) material is one in which
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
increases with the rate of shear strain. Such a ''shear thickening fluid'', also known by the initialism ''STF'', is an example of a
non-Newtonian fluid A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, i.e., constant viscosity independent of stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for ex ...
. This behaviour is usually not observed in pure materials, but can occur in suspensions. A dilatant is a
non-Newtonian fluid A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, i.e., constant viscosity independent of stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for ex ...
where the shear viscosity increases with applied
shear stress Shear stress, often denoted by ( Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. '' Normal stress'', on ...
. This behavior is only one type of deviation from Newton’s Law, and it is controlled by such factors as particle size, shape, and distribution. The properties of these suspensions depend on
Hamaker theory After the explanation of van der Waals forces by Fritz London, several scientists soon realised that his definition could be extended from the interaction of two molecules with induced dipoles to macro-scale objects by summing all of the forces bet ...
and
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and ...
s and can be stabilized electrostatically or sterically. Shear thickening behavior occurs when a colloidal suspension transitions from a stable state to a state of
flocculation Flocculation, in the field of chemistry, is a process by which colloidal particles come out of suspension to sediment under the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from ...
. A large portion of the properties of these systems are due to the surface chemistry of particles in dispersion, known as
colloids A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
. This can readily be seen with a mixture of
cornstarch Corn starch, maize starch, or cornflour (British English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the kernel. Corn starch is a common food ingredient, often used to thicken sauces or sou ...
and
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(sometimes called oobleck), which acts in counterintuitive ways when struck or thrown against a surface. Sand that is completely soaked with water also behaves as a dilatant material. This is the reason why when walking on wet sand, a dry area appears directly underfoot.
Rheopecty In continuum mechanics, rheopecty or rheopexy is the rare property of some non-Newtonian fluids to show a time-dependent increase in viscosity ( time-dependent viscosity); the longer the fluid undergoes shearing force, the higher its viscosity. ...
is a similar property in which viscosity increases with cumulative stress or agitation over time. The opposite of a dilatant material is a
pseudoplastic In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo-plastic behaviour, and is usually defined as excluding time-dependent effects, s ...
.


Definitions

There are two types of deviation from Newton's law that are observed in real systems. The most common deviation is shear thinning behavior, where the
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
of the system decreases as the
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
is increased. The second deviation is shear thickening behavior where, as the shear rate is increased, the viscosity of the system also increases. This behavior is observed because the system crystallizes under stress and behaves more like a solid than a solution. Thus, the viscosity of a shear-thickening fluid is dependent on the shear rate. The presence of suspended particles often affects the viscosity of a solution. In fact, with the right particles, even a Newtonian fluid can exhibit non-Newtonian behavior. An example of this is cornstarch in water and is included in the
Examples Example may refer to: * '' exempli gratia'' (e.g.), usually read out in English as "for example" * .example, reserved as a domain name that may not be installed as a top-level domain of the Internet ** example.com, example.net, example.org, e ...
section below. The parameters that control shear thickening behavior are: particle size and particle size distribution, particle volume fraction, particle shape, particle-particle interaction, continuous phase viscosity, and the type, rate, and time of deformation. In addition to these parameters, all shear thickening fluids are stabilized suspensions and have a volume fraction of solid that is relatively high. Viscosity of a solution as a function of shear rate is given by the
power-law In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one q ...
equation, : \eta = K \dot^, where η is the viscosity, ''K'' is a material-based constant, and γ̇ is the applied shear rate. Dilatant behavior occurs when ''n'' is greater than 1. Below is a table of viscosity values for some common materials. :


Stabilized suspensions

A suspension is composed of a fine, particulate phase dispersed throughout a differing, heterogeneous phase. Shear-thickening behavior is observed in systems with a solid, particulate phase dispersed within a liquid phase. These solutions are different from a
Colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
in that they are unstable; the solid particles in dispersion are sufficiently large for
sedimentation Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to the ...
, causing them to eventually settle. Whereas the solids dispersed within a colloid are smaller and will not settle. There are multiple methods for stabilizing suspensions, including electrostatics and sterics. In an unstable suspension, the dispersed, particulate phase will come out of solution in response to forces acting upon the particles, such as gravity or Hamaker attraction. The magnitude of the effect these forces have on pulling the particulate phase out of solution is proportional to the size of the particulates; for a large particulate, the gravitational forces are greater than the particle-particle interactions, whereas the opposite is true for small particulates. Shear thickening behavior is typically observed in suspensions of small, solid particulates, indicating that the particle-particle Hamaker attraction is the dominant force. Therefore, stabilizing a suspension is dependent upon introducing a counteractive repulsive force.
Hamaker theory After the explanation of van der Waals forces by Fritz London, several scientists soon realised that his definition could be extended from the interaction of two molecules with induced dipoles to macro-scale objects by summing all of the forces bet ...
describes the attraction between bodies, such as particulates. It was realized that the explanation of
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and ...
s could be upscaled from explaining the interaction between two molecules with induced dipoles to macro-scale bodies by summing all the intermolecular forces between the bodies. Similar to Van der Waals forces, Hamaker theory describes the magnitude of the particle-particle interaction as inversely proportional to the square of the distance. Therefore, many stabilized suspensions incorporate a long-range repulsive force that is dominant over Hamaker attraction when the interacting bodies are at a sufficient distance, effectively preventing the bodies from approaching one another. However, at short distances, the Hamaker attraction dominates, causing the particulates to coagulate and fall out of solution. Two common long-range forces used in stabilizing suspensions are electrostatics and sterics.


Electrostatically stabilized suspensions

Suspensions of similarly charged particles dispersed in a liquid electrolyte are stabilized through an effect described by the Helmholtz double layer model. The model has two layers. The first layer is the charged surface of the particle, which creates an electrostatic field that affects the ions in the electrolyte. In response, the ions create a diffuse layer of equal and opposite charge, effectively rendering the surface charge neutral. However, the diffuse layer creates a potential surrounding the particle that differs from the bulk electrolyte. The diffuse layer serves as the long-range force for stabilization of the particles. When particles near one another, the diffuse layer of one particle overlaps with that of the other particle, generating a repulsive force. The following equation provides the energy between two colloids as a result of the Hamaker interactions and electrostatic repulsion. : V = \pi R\left(\frac + \frac\right), where: : ''V'', energy between a pair of colloids, : ''R'', radius of colloids, : −''H'', Hamaker constant between colloid and solvent, : ''h'', distance between colloids, : ''C'', surface ion concentration, : ''k'', Boltzmann constant, : ''T'', temperature in
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
s, : \Gamma, surface excess, : \kappa, inverse Debye length.


Sterically stabilized suspensions

Different from electrostatics, sterically stabilized suspensions rely on the physical interaction of polymer chains attached to the surface of the particles to keep the suspension stabilized; the adsorbed polymer chains act as a spacer to keep the suspended particles separated at a sufficient distance to prevent the Hamaker attraction from dominating and pulling the particles out of suspension. The polymers are typically either grafted or adsorbed onto the surface of the particle. With grafted polymers, the backbone of the polymer chain is covalently bonded to the particle surface. Whereas an adsorbed polymer is a copolymer composed of lyophobic and lyophilic region, where the lyophobic region non-covalently adheres to the particle surface and the lyophilic region forms the steric boundary or spacer.


Theories behind shear thickening behavior

Dilatancy in a colloid, or its ability to order in the presence of shear forces, is dependent on the ratio of interparticle forces. As long as interparticle forces such as
Van der Waals forces In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
dominate, the suspended particles remain in ordered layers. However, once shear forces dominate, particles enter a state of
flocculation Flocculation, in the field of chemistry, is a process by which colloidal particles come out of suspension to sediment under the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from ...
and are no longer held in suspension; they begin to behave like a solid. When the shear forces are removed, the particles spread apart and once again form a stable suspension. Shear thickening behavior is highly dependent upon the volume fraction of solid particulate suspended within the liquid. The higher the volume fraction, the less shear required to initiate the shear thickening behavior. The shear rate at which the fluid transitions from a Newtonian flow to a shear thickening behavior is known as the critical shear rate.


Order to disorder transition

When shearing a concentrated stabilized solution at a relatively low shear rate, the repulsive particle-particle interactions keep the particles in an ordered, layered, equilibrium structure. However, at shear rates elevated above the critical shear rate, the shear forces pushing the particles together overcome the repulsive particle-particle interactions, forcing the particles out of their equilibrium positions. This leads to a disordered structure, causing an increase in viscosity. The critical shear rate here is defined as the shear rate at which the shear forces pushing the particles together are equivalent to the repulsive particle interactions.


Hydroclustering

When the particles of a stabilized suspension transition from an immobile state to mobile state, small groupings of particles form hydroclusters, increasing the viscosity. These hydroclusters are composed of particles momentarily compressed together, forming an irregular, rod-like chain of particles akin to a logjam or traffic jam. In theory the particles have extremely small interparticle gaps, rendering this momentary, transient hydrocluster as incompressible. It is possible that additional hydroclusters will form through aggregation.


Examples


Corn starch and water (oobleck)

Cornstarch is a common thickening agent used in cooking. It is also a very good example of a shear-thickening system. When a force is applied to a 1:1.25 mixture of water and cornstarch, the mixture acts as a solid and resists the force.


Silica and polyethylene glycol

Silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
nano-particles are dispersed in a solution of
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
. The silica particles provide a high-strength material when flocculation occurs. This allows it to be used in applications such as liquid body armor and brake pads.


Applications


Traction control

Dilatant materials have certain industrial uses due to their shear-thickening behavior. For example, some
all-wheel drive An all-wheel drive vehicle (AWD vehicle) is one with a powertrain capable of providing power to all its wheels, whether full-time or on-demand. The most common forms of all-wheel drive are: ;1x1 : All unicycles Reflecting one axle with one ...
systems use a
viscous coupling unit A viscous coupling is a mechanical device which transfers torque and rotation by the medium of a viscous fluid. Design Rotary viscous couplings with interleaved, perforated plates and filled with viscous fluids are used in automotive system ...
full of dilatant fluid to provide power transfer between front and rear wheels. On high-traction road surfacing, the relative motion between primary and secondary drive wheels is the same, so the shear is low and little power is transferred. When the primary drive wheels start to slip, the shear increases, causing the fluid to thicken. As the fluid thickens, the
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
transferred to the secondary drive wheels increases proportionally, until the maximum amount of power possible in the fully thickened state is transferred. (See also
limited-slip differential A limited-slip differential (LSD) is a type of differential that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic tr ...
, some types of which operate on the same principle.) To the operator, this system is entirely passive, engaging all four wheels to drive when needed and dropping back to two wheel drive once the need has passed. This system is generally used for on-road vehicles rather than off-road vehicles, since the maximum viscosity of the dilatant fluid limits the amount of torque that can be passed across the coupling.


Body armor

Various corporate and government entities are researching the application of shear-thickening fluids for use as
body armor Body armor, also known as body armour, personal armor or armour, or a suit or coat of armor, is protective clothing designed to absorb or deflect physical attacks. Historically used to protect military personnel, today it is also used by variou ...
. Such a system could allow the wearer flexibility for a normal range of movement, yet provide rigidity to resist piercing by
bullet A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. Bullets are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax. Bullets are made in various shapes and co ...
s, stabbing
knife A knife ( : knives; from Old Norse 'knife, dirk') is a tool or weapon with a cutting edge or blade, usually attached to a handle or hilt. One of the earliest tools used by humanity, knives appeared at least 2.5 million years ago, as evid ...
blows, and similar attacks. The principle is similar to that of
mail The mail or post is a system for physically transporting postcards, letters, and parcels. A postal service can be private or public, though many governments place restrictions on private systems. Since the mid-19th century, national postal sys ...
armor, though body armor using a dilatant would be much lighter. The dilatant fluid would disperse the force of a sudden blow over a wider area of the user's body, reducing the blunt force trauma. However, the dilatant would not provide any additional protection against slow attacks, such as a slow but forceful stab, which would allow flow to occur. In one study, standard
Kevlar Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s a ...
fabric was compared to a composite armor of Kevlar and a proprietary shear-thickening fluid. The results showed that the Kevlar/fluid combination performed better than the pure-Kevlar material, despite having less than one-third the Kevlar thickness. Four examples of dilatant materials being used in personal protective equipment are Armourgel, D3O, ArtiLage (Artificial Cartilage foam) and "Active Protection System" manufactured by
Dow Corning Dow Corning Corporation, was an American multinational corporation headquartered in Midland, Michigan, United States. Originally established as a joint venture between The Dow Chemical Company and Corning Incorporated, Dow bought out Corning and ...
.
In 2002, researchers at the
U.S. Army Research Laboratory The U.S. Army Combat Capabilities Development Command Army Research Laboratory (DEVCOM ARL) is the U.S. Army's foundational research laboratory. ARL is headquartered at the Adelphi Laboratory Center (ALC) in Adelphi, Maryland. Its largest sing ...
and University of Delaware began researching the use of liquid armor, or a shear-thickening fluid in body armor. Researchers demonstrated that high-strength fabrics such as Kevlar can be made more bulletproof and stab-resistant when impregnated with the fluid. The goal of the “liquid armor” technology is to create a new material that is low-cost and lightweight while still offering equivalent or superior ballistic properties compared to current Kevlar fabric. For their work on liquid armor, Dr. Eric Wetzel, an ARL mechanical engineer, and his team were awarded the 2002 Paul A. Siple Award, the Army’s highest award for scientific achievement, at the Army Science Conference. The company D3O invented a non-Newtonian–based material that has seen wide adaptation across a broad range of standard and custom applications, including motorcycle and extreme-sports protective gear, industrial work wear, military applications, and impact protection for electronics. The materials allow flexibility during normal wear but become stiff and protective when strongly impacted. While some products are marketed directly, much of their manufacturing capability goes to selling and license the material to other companies for use in their own lines of protective products.


See also


References

{{Reflist, 30em


External links


Shear Thickening Fluid (STF) Fabric: Publications


* ttp://www.military.com/soldiertech/0,14632,Soldiertech_Science,,00.html ''Army Science: Robots, Liquid Armor and Virtual Reality''
"Troops to test liquid armour"
Continuum mechanics Fluid dynamics Non-Newtonian fluids